-
mathlove 16/03/2017 at 11:33
Put \(t=x^2+18x-24\Leftrightarrow x^2+18x-24-t=0\Leftrightarrow x=-9\pm\sqrt{105+t},\left(t\ge-105\right)\), the equation become
\(\dfrac{1}{t+4}+\dfrac{1}{t}=\dfrac{-12}{t-5}\) (1)
With the condition \(t\notin\left\{0;-4;5\right\}\), \(\left(1\right)\Leftrightarrow7t^2+21t-10=0\Leftrightarrow t=\dfrac{-21\pm\sqrt{721}}{14}\)(both of these solutions are not smaller -105). So, the done equation have 4 solutions
\(x=-9\pm\pm\sqrt{\dfrac{1449+\sqrt{721}}{14}};x=-9\pm\sqrt{\dfrac{1449-\sqrt{721}}{14}}\) .
Selected by MathYouLike -
FA KAKALOTS 28/01/2018 at 22:11
put t=x2+18x−24⇔x2+18x−24−t=0⇔x=−9±√105+t,(t≥−105)
, the equation become
1t+4+1t=−12t−5
(1)
With the condition t∉{0;−4;5}
, (1)⇔7t2+21t−10=0⇔t=−21±√72114
(both of these solutions are not smaller -105). So, the done equation have 4 solutions
x=−9±±√1449+√72114;x=−9±√1449−√72114
.