MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Lê Quốc Trần Anh Coordinator

03/08/2017 at 09:19
Answers
2
Follow

Prove that:

\(\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{9}+...+\dfrac{1}{101}\notin N\)




    List of answers
  • ...
    یևσϞջ♱ɮևσϞ➪ȿ₂ 03/08/2017 at 09:55

    Let \(A=\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{9}+...+\dfrac{1}{101}\)

    We have \(A< \dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{90}=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}=1-\dfrac{1}{10}< 1\)

    Cause A always \(>0\), but \(A< 1\Rightarrow A\notin N\)

    Selected by MathYouLike
  • ...
    Phan Thanh Tinh Coordinator 03/08/2017 at 12:22

    Why is A smaller than \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{90}\)?

    I can't understand.A has : (101 - 5) : 2 + 1 = 49 (terms) but the sum you gave has only 9 terms.The solution isn't logical

    Lê Quốc Trần Anh selected this answer.

Post your answer

Please help Lê Quốc Trần Anh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM