MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Lê Quốc Trần Anh Coordinator

03/08/2017 at 09:18
Answers
1
Follow

Find x:

\(1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{x\left(x+1\right):2}=1\dfrac{1991}{1993}\)




    List of answers
  • ...
    یևσϞջ♱ɮևσϞ➪ȿ₂ 03/08/2017 at 10:06

    Let \(A=1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{x\left(x+1\right):2}=1\dfrac{1991}{1993}\)

    \(A=\dfrac{1}{2}\cdot\left(1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{x\cdot\left(x+1\right):2}\right)=\dfrac{3984}{3986}\)

    \(A=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{x\cdot\left(x+1\right)}=\dfrac{3984}{3986}\)

    \(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{3984}{3986}\)

    \(A=\dfrac{1}{1}-\dfrac{1}{x+1}=\dfrac{3984}{3986}\Rightarrow x=1992\)

    So x = 1992.

    Lê Quốc Trần Anh selected this answer.

Post your answer

Please help Lê Quốc Trần Anh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM