MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Lê Quốc Trần Anh Coordinator

03/08/2017 at 08:48
Answers
4
Follow

Find \(x,y\in N\):

\(\dfrac{x}{3}-\dfrac{4}{y}=\dfrac{1}{5}\)




    List of answers
  • ...
    یևσϞջ♱ɮևσϞ➪ȿ₂ 03/08/2017 at 09:23

    \(\dfrac{x}{3}-\dfrac{4}{y}=\dfrac{1}{5}\)(1)

    \(\Leftrightarrow\dfrac{xy-12}{3y}=\dfrac{1}{5}\)

    \(\Leftrightarrow5xy-60=3y\)

    \(\Leftrightarrow5xy-3y=60\)

    \(\Leftrightarrow y\cdot\left(5x-3\right)=60\)

    \(\Rightarrow y=\dfrac{60}{5x-3}\)(2).

    (1),(2) => \(\dfrac{x}{3}-\dfrac{4}{\dfrac{60}{5x-3}}=\dfrac{1}{5}\Leftrightarrow\dfrac{x}{3}-\dfrac{20x-12}{60}=\dfrac{1}{5}\Leftrightarrow\dfrac{x}{3}-\dfrac{4\cdot\left(5x-3\right)}{60}=\dfrac{1}{5}\Leftrightarrow\dfrac{x}{3}-\dfrac{5x-3}{15}=\dfrac{1}{5}\Leftrightarrow\dfrac{5x}{15}-\dfrac{5x-3}{15}=\dfrac{1}{5}\Leftrightarrow\dfrac{3}{15}=\dfrac{1}{5}\) . 

    From here we know that x has lots of value but just (x;y) = (1;30),(3;5) satisfy thread.

    Selected by MathYouLike
  • ...
    Phan Thanh Tinh Coordinator 03/08/2017 at 12:16

    Dao Trong Luan's solution is more logical.You should choose his.

  • ...
    baohong912006 04/08/2017 at 08:40

    x3−4y=15x3−4y=15(1)

    ⇔xy−123y=15⇔xy−123y=15

    ⇔5xy−60=3y⇔5xy−60=3y

    ⇔5xy−3y=60⇔5xy−3y=60

    ⇔y⋅(5x−3)=60⇔y⋅(5x−3)=60

    ⇒y=605x−3⇒y=605x−3(2).

    (1),(2) => x3−4605x−3=15⇔x3−20x−1260=15⇔x3−4⋅(5x−3)60=15⇔x3−5x−315=15⇔5x15−5x−315=15⇔315=15x3−4605x−3=15⇔x3−20x−1260=15⇔x3−4⋅(5x−3)60=15⇔x3−5x−315=15⇔5x15−5x−315=15⇔315=15 . 

    From here we know that x has lots of value but just (x;y) = (1;30),(3;5) satisfy thread.


     

  • ...
    Dao Trong Luan 03/08/2017 at 09:36

    \(\Rightarrow\dfrac{4}{y}=\dfrac{x}{3}-\dfrac{1}{5}\)

    \(\Rightarrow\dfrac{4}{y}=\dfrac{5x}{15}-\dfrac{3}{15}\)

    \(\Rightarrow\dfrac{4}{y}=\dfrac{5x-3}{15}\)

    \(\Rightarrow y\left(5x-3\right)=60\)

    Because \(5x-3\equiv2\left(mod5\right)\) and 5x-3 \(\in U\left(60\right)\)

    \(\Rightarrow5x-3\in\left\{2;12\right\}\)

    If 5x - 3 = 2

    => 5x = 5 => x = 1

    And y = 60: 2 = 30

    If 5x  - 3 = 12

    => 5x = 15 => x = 3

    And y = 60 : 12 = 5

    So \(\left(x,y\right)=\left(1;30\right),\left(3;5\right)\)


Post your answer

Please help Lê Quốc Trần Anh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM