MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Lê Quốc Trần Anh Coordinator

03/08/2017 at 08:46
Answers
2
Follow

Find a,b such that:

\(\dfrac{a}{2}+\dfrac{b}{3}=\dfrac{a+b}{2+3}\)




    List of answers
  • ...
    یևσϞջ♱ɮևσϞ➪ȿ₂ 03/08/2017 at 09:07

    \(\dfrac{a}{2}+\dfrac{b}{3}=\dfrac{a+b}{2+3}\)(1)

    \(\Leftrightarrow\dfrac{3a+2b}{6}=\dfrac{a+b}{5}\)

    \(\Rightarrow15a+10b=6a+6b\)

    \(\Rightarrow9a+4b=0\)

    \(\Rightarrow a=-\dfrac{4b}{9}\)(2)

    (1),(2) => \(-\dfrac{4b}{18}+\dfrac{b}{3}=\dfrac{-\dfrac{4b}{9}+b}{2+3}\)

    Solve this expression we have b = 0.

    So from here we have : \(\dfrac{a}{2}+0=\dfrac{a+0}{5}\Rightarrow a=0\)

    So (a;b) = (0;0)

    Selected by MathYouLike
  • ...
    Lãng Tử Hào Hoa 06/08/2017 at 10:02

    \(\dfrac{a}{2}+\dfrac{b}{3}=\dfrac{a+b}{2+3}=\dfrac{a+b}{5}=\dfrac{a}{5}+\dfrac{b}{5}\)

    We have:

    \(\dfrac{a}{2}\ge\dfrac{a}{5}\)  (Equal sign occurs  \(\Leftrightarrow a=0\))

    \(\dfrac{a}{3}\ge\dfrac{a}{5}\)  (Equal sign occurs  \(\Leftrightarrow a=0\))

    \(\Leftrightarrow\dfrac{a}{2}+\dfrac{a}{3}\ge\dfrac{a+b}{5}\) 

    Equal sign occurs  \(\Leftrightarrow a=b=0\)


Post your answer

Please help Lê Quốc Trần Anh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM