Lê Quốc Trần Anh Coordinator
03/08/2017 at 08:46-
یևσϞջ♱ɮևσϞ➪ȿ₂ 03/08/2017 at 09:07
\(\dfrac{a}{2}+\dfrac{b}{3}=\dfrac{a+b}{2+3}\)(1)
\(\Leftrightarrow\dfrac{3a+2b}{6}=\dfrac{a+b}{5}\)
\(\Rightarrow15a+10b=6a+6b\)
\(\Rightarrow9a+4b=0\)
\(\Rightarrow a=-\dfrac{4b}{9}\)(2)
(1),(2) => \(-\dfrac{4b}{18}+\dfrac{b}{3}=\dfrac{-\dfrac{4b}{9}+b}{2+3}\)
Solve this expression we have b = 0.
So from here we have : \(\dfrac{a}{2}+0=\dfrac{a+0}{5}\Rightarrow a=0\)
So (a;b) = (0;0)
Selected by MathYouLike -
Lãng Tử Hào Hoa 06/08/2017 at 10:02
\(\dfrac{a}{2}+\dfrac{b}{3}=\dfrac{a+b}{2+3}=\dfrac{a+b}{5}=\dfrac{a}{5}+\dfrac{b}{5}\)
We have:
\(\dfrac{a}{2}\ge\dfrac{a}{5}\) (Equal sign occurs \(\Leftrightarrow a=0\))
\(\dfrac{a}{3}\ge\dfrac{a}{5}\) (Equal sign occurs \(\Leftrightarrow a=0\))
\(\Leftrightarrow\dfrac{a}{2}+\dfrac{a}{3}\ge\dfrac{a+b}{5}\)
Equal sign occurs \(\Leftrightarrow a=b=0\)