MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Lê Quốc Trần Anh Coordinator

02/08/2017 at 13:14
Answers
3
Follow

Prove that the sum of 100 fraction in the series is smaller than \(\dfrac{1}{4}\):

\(\dfrac{1}{5},\dfrac{1}{45},\dfrac{1}{117}...\)




    List of answers
  • ...
    Phan Thanh Tinh Coordinator 02/08/2017 at 16:39

    Dao Trong Luan : \(\dfrac{100}{400}< \dfrac{1}{4}?\)

  • ...
    Dao Trong Luan 02/08/2017 at 16:21

    We have:

    \(\dfrac{1}{5};\dfrac{1}{45};\dfrac{1}{117};...\) <=> \(\dfrac{1}{1\cdot5};\dfrac{1}{5\cdot9};\dfrac{1}{9\cdot13};...\)

    So the first numbers of denominator of  fraction 100th of this series is:

    \(\left(100-1\right)\cdot4+1=397\)

    => This fraction is \(\dfrac{1}{397\cdot\left(397+4\right)}=\dfrac{1}{397\cdot401}\)

    So their sum are:

    \(\dfrac{1}{1\cdot5}+\dfrac{1}{5\cdot9}+\dfrac{1}{9\cdot13}+...+\dfrac{1}{397\cdot401}\)

    \(=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{397}-\dfrac{1}{401}\right)\)

    \(=\dfrac{1}{4}\left(1-\dfrac{1}{401}\right)=\dfrac{1}{4}\cdot\dfrac{400}{401}=\dfrac{100}{401}< \dfrac{100}{400}< \dfrac{1}{4}\)

    So the sum of 100 fraction in the series is smaller than \(\dfrac{1}{4}\)

  • ...
    Dao Trong Luan 02/08/2017 at 17:10

    Oh, sorry, I write mistake, sorry

    \(\dfrac{100}{400}=\dfrac{1}{4}\)

    hiha


Post your answer

Please help Lê Quốc Trần Anh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM