Lê Quốc Trần Anh Coordinator
02/08/2017 at 13:14-
Dao Trong Luan : \(\dfrac{100}{400}< \dfrac{1}{4}?\)
-
Dao Trong Luan 02/08/2017 at 16:21
We have:
\(\dfrac{1}{5};\dfrac{1}{45};\dfrac{1}{117};...\) <=> \(\dfrac{1}{1\cdot5};\dfrac{1}{5\cdot9};\dfrac{1}{9\cdot13};...\)
So the first numbers of denominator of fraction 100th of this series is:
\(\left(100-1\right)\cdot4+1=397\)
=> This fraction is \(\dfrac{1}{397\cdot\left(397+4\right)}=\dfrac{1}{397\cdot401}\)
So their sum are:
\(\dfrac{1}{1\cdot5}+\dfrac{1}{5\cdot9}+\dfrac{1}{9\cdot13}+...+\dfrac{1}{397\cdot401}\)
\(=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{397}-\dfrac{1}{401}\right)\)
\(=\dfrac{1}{4}\left(1-\dfrac{1}{401}\right)=\dfrac{1}{4}\cdot\dfrac{400}{401}=\dfrac{100}{401}< \dfrac{100}{400}< \dfrac{1}{4}\)
So the sum of 100 fraction in the series is smaller than \(\dfrac{1}{4}\)
-
Dao Trong Luan 02/08/2017 at 17:10
Oh, sorry, I write mistake, sorry
\(\dfrac{100}{400}=\dfrac{1}{4}\)