Lê Quốc Trần Anh Coordinator
02/08/2017 at 09:25-
Let a and b be the number of digits of 450 and 2550 respectively\(\left(a,b\in Z^+\right)\),then :
\(\Rightarrow10^{a-1}< 4^{50}< 10^a;10^{b-1}< 25^{50}< 10^b\)
\(\Rightarrow10^{a-1}.10^{b-1}< 4^{50}.25^{50}< 10^a.10^b\)
\(\Rightarrow10^{a+b-2}< 100^{50}< 10^{a+b}\Rightarrow10^{a+b-2}< 10^{100}< 10^{a+b}\)
\(\Rightarrow a+b-2< 100< a+b\)
\(\Rightarrow\left\{{}\begin{matrix}a+b< 102\\a+b>100\end{matrix}\right.\)\(\Rightarrow a+b=101\)
So,the answer is 101
Lê Quốc Trần Anh selected this answer.