MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Lê Quốc Trần Anh Coordinator

02/08/2017 at 09:25
Answers
1
Follow

When we write the result of \(4^{50}and25^{50}\) continuously, we get a number that has how many digits?




    List of answers
  • ...
    Phan Thanh Tinh Coordinator 02/08/2017 at 12:52

    Let a and b be the number of digits of 450 and 2550 respectively\(\left(a,b\in Z^+\right)\),then :

    \(\Rightarrow10^{a-1}< 4^{50}< 10^a;10^{b-1}< 25^{50}< 10^b\)

    \(\Rightarrow10^{a-1}.10^{b-1}< 4^{50}.25^{50}< 10^a.10^b\)

    \(\Rightarrow10^{a+b-2}< 100^{50}< 10^{a+b}\Rightarrow10^{a+b-2}< 10^{100}< 10^{a+b}\)

    \(\Rightarrow a+b-2< 100< a+b\)

    \(\Rightarrow\left\{{}\begin{matrix}a+b< 102\\a+b>100\end{matrix}\right.\)\(\Rightarrow a+b=101\)

    So,the answer is 101

    Lê Quốc Trần Anh selected this answer.

Post your answer

Please help Lê Quốc Trần Anh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM