MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Lê Quốc Trần Anh Coordinator

01/08/2017 at 09:01
Answers
2
Follow

Give a,b,c are different pair-one prime numbers.

Prove that: \(\dfrac{1}{\left[a,b\right]}+\dfrac{1}{\left[b,c\right]}+\dfrac{1}{\left[a,c\right]}\le\dfrac{1}{3}\)




    List of answers
  • ...
    Lãng Tử Hào Hoa 02/08/2017 at 21:02

    Without reducing generality, we assume \(a>b>c\)

    \(\Rightarrow\dfrac{1}{\left[a,b\right]}=\dfrac{1}{ab}\le\dfrac{1}{2}.\dfrac{1}{3}=\dfrac{1}{6}\)

    Same: \(\left\{{}\begin{matrix}\dfrac{1}{\left[b,c\right]}=\dfrac{1}{bc}\le\dfrac{1}{15}\\\dfrac{1}{\left[a,c\right]}=\dfrac{1}{ac}\le\dfrac{1}{10}\end{matrix}\right.\)

    \(\Rightarrow VT\le\dfrac{1}{6}+\dfrac{1}{15}+\dfrac{1}{10}=\dfrac{1}{3}=VP\)  (The thing must prove)

    Selected by MathYouLike
  • ...
    Faded 28/01/2018 at 21:33

    Without reducing generality, we assume a>b>c

    ⇒1[a,b]=1ab≤12.13=16

    Same: ⎧⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪⎩1[b,c]=1bc≤1151[a,c]=1ac≤110

    ⇒VT≤16+115+110=13=VP

      (The thing must prove)


Post your answer

Please help Lê Quốc Trần Anh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM