MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Lê Quốc Trần Anh Coordinator

01/08/2017 at 08:55
Answers
1
Follow

Prove that:

\(\dfrac{1}{3}+\dfrac{1}{31}+\dfrac{1}{35}+\dfrac{1}{37}+\dfrac{1}{47}+\dfrac{1}{53}+\dfrac{1}{61}< \dfrac{1}{2}\)




    List of answers
  • ...
    Nguyễn Thị Lan Hương 01/08/2017 at 17:03

    We have :

    \(\dfrac{1}{3}+\dfrac{1}{31}+\dfrac{1}{35}+\dfrac{1}{37}+\dfrac{1}{47}+\dfrac{1}{53}+\dfrac{1}{61}\)

    \(=\dfrac{1}{3}+\left(\dfrac{1}{31}+\dfrac{1}{35}+\dfrac{1}{37}\right)+\left(\dfrac{1}{47}+\dfrac{1}{53}+\dfrac{1}{61}\right)\)

    \(< \dfrac{1}{3}+\left(\dfrac{1}{30}+\dfrac{1}{30}+\dfrac{1}{30}\right)+\left(\dfrac{1}{45}+\dfrac{1}{45}+\dfrac{1}{45}\right)\)

    \(=\dfrac{1}{3}+\dfrac{1}{10}+\dfrac{1}{15}=\dfrac{1}{2}\)

    => \(\dfrac{1}{3}+\dfrac{1}{31}+\dfrac{1}{35}+\dfrac{1}{37}+\dfrac{1}{47}+\dfrac{1}{53}+\dfrac{1}{61}< \dfrac{1}{2}\)

    Selected by MathYouLike

Post your answer

Please help Lê Quốc Trần Anh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM