MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Summer Clouds moderators

31/07/2017 at 09:00
Answers
3
Follow

How many different 3-digit whole numbers can be formed using the digits 4, 6, 0 and 8, assuming that no digit can be repeated in a number?




    List of answers
  • ...
    Phan Thanh Tinh Coordinator 31/07/2017 at 09:39

    Let \(\overline{abc}\) be the number\(\left(a,b,c\in\left\{4;6;0;8\right\};a\ne0\right)\) so that a,b,c are distinct.We have :

    There are : 4 - 1 = 3 choices to choose a (since \(a\ne0\))

    There are : 4 - 1 = 3 choices to choose b (since \(b\ne a\))

    There are : 4 - 2 = 2 choices to choose c (since a,b,c are distinct)

    So,the number of satisfied numbers we can form is : 3 x 3 x 2 = 18

  • ...
    Lê Quốc Trần Anh Coordinator 31/07/2017 at 09:04

    Using the hundreds digit 4, we have 6 numbers: \(406;408;460;468;480;486\)

    Using the hundreds digit 6, we have 6 numbers: \(604;608;640;648;680;684\)

    Using the hundreds digit 8, we have 6 numbers: \(804;806;840;846;860;864\)

    If the hundreds digit is 0, then the numbers are not the 3-digit-number.

    So there are: \(6+6+6=18\left(numbers\right)\)

  • ...
    Nguyễn Thị Lan Hương 01/08/2017 at 16:52

    There are three ways to choose hundred of digits 

    There are three dozen digit selectors

    There are two ways to select the unit - number 

    It is possible to write three digit whole number 

    3 x 3 x 2 = 18 ( number )


Post your answer

Please help Summer Clouds to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM