Đỗ Phi Phi
26/07/2017 at 22:28-
Searching4You 27/07/2017 at 09:29
The answer is 901.
From 1 to 9 we have sum : 45.
From 10 to 19 we have : 1 + 0 + 1 + 1 + 1 + 2 + 1 + 3 +...+ 1 + 9 we have sum 55.
Next from 20 to 29 we have sum 65.
................. 30 to 39 we have sum 75.
................. 40 to 49 we have sum 85.
................. 50 to 59 we have sum 95.
................. 60 to 69 we have sum 105.
................. 70 to 79 we have sum 115.
................. 80 to 89 we have sum 125.
................. 90 to 99 we have sum 135.
And the last 100 we have sum 1 + 0 + 0 = 1.
So the sum she obtained is : 65 + 75 + 85 + 95 +105 +115 +125 +135 + 1 = 901.
Selected by MathYouLike -
FA KAKALOTS 08/02/2018 at 22:01
The answer is 901.
From 1 to 9 we have sum : 45.
From 10 to 19 we have : 1 + 0 + 1 + 1 + 1 + 2 + 1 + 3 +...+ 1 + 9 we have sum 55.
Next from 20 to 29 we have sum 65.
................. 30 to 39 we have sum 75.
................. 40 to 49 we have sum 85.
................. 50 to 59 we have sum 95.
................. 60 to 69 we have sum 105.
................. 70 to 79 we have sum 115.
................. 80 to 89 we have sum 125.
................. 90 to 99 we have sum 135.
And the last 100 we have sum 1 + 0 + 0 = 1.
So the sum she obtained is : 65 + 75 + 85 + 95 +105 +115 +125 +135 + 1 = 901.
-
From 1 to 9 the sum of the individual digits are: \(1+2+3+4+5+6+7+8+9=45\)
From 10 to 19: the tens digit all have the same digit, the ones digit have the rules from 1 to 9.
So as the same with 20-99.
The number 100 has the individual digits sum: \(1+0+0=1\)
She has obtained the sum: \(\left[\left(1+2+3+4+5+6+7+8+9\right).10\right]+\left[\left(1+2+3+4+5+6+7+8+9\right).10\right]+1\)
\(=450+450+1=901\)
So she obtained the sum: \(901\)