Summer Clouds moderators
26/07/2017 at 17:27-
Searching4You 26/07/2017 at 17:32
\(\dfrac{x^2-3x+2}{x^2+4x+5}=\dfrac{1}{2}\Rightarrow2\left(x^2-3x+2\right)=x^2+4x+5\)
\(\Leftrightarrow2x^2-6x+4=x^2+4x+5\)
\(\Leftrightarrow x^2-10x-1=0\)
=> We have two solutions : \(\left[{}\begin{matrix}x=5+\sqrt{26}\\x=5-\sqrt{26}\end{matrix}\right.\)
Selected by MathYouLike -
FA KAKALOTS 28/01/2018 at 22:13
We have : x2−3x+2x2+4x+5=12
⇒(x2−3x+2).2=x2+4x+5
⇔2x2−6x+4=x2+4x+5
⇔2x2−x2−6x−4x=5−4
⇔x2−10x−1=0
⇔x2−10x+25−26=0
⇔(x−5)2=26
=> x - 5 = √26
=> x = √26+5
-
Searching4You was right
-
Lý Tiểu Phi Đao 26/07/2017 at 17:41
We have : \(\dfrac{x^2-3x+2}{x^2+4x+5}=\dfrac{1}{2}\)
\(\Rightarrow\left(x^2-3x+2\right).2=x^2+4x+5\)
\(\Leftrightarrow2x^2-6x+4=x^2+4x+5\)
\(\Leftrightarrow2x^2-x^2-6x-4x=5-4\)
\(\Leftrightarrow x^2-10x-1=0\)
\(\Leftrightarrow x^2-10x+25-26=0\)
\(\Leftrightarrow\left(x-5\right)^2=26\)
=> x - 5 = \(\sqrt{26}\)
=> x = \(\sqrt{26}+5\)