MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Searching4You

26/07/2017 at 12:06
Answers
6
Follow

Let a,b are numbers which satisfy \(\left\{{}\begin{matrix}a+b=3\\a^2+b^2\ge5\end{matrix}\right.\)

Find minimum value of the expression : \(P=a^4+b^4+6a^2b^2\)?


Minimum


    List of answers
  • ...
    Kaya Renger Coordinator 16/08/2017 at 21:35

    \(\left\{{}\begin{matrix}a+b=3\\a^2+b^2\ge5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a^2+2ab+b^2=9\\a^4+2a^2b^2+b^4\ge25\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2ab=9-\left(a^2+b^2\right)\\a^4+b^4+2a^2b^2\ge25\end{matrix}\right.\)

    We have : a2 + b2 \(\ge\) 5

    => \(-\left(a^2+b^2\right)\le5\)

    => \(9-\left(a^2+b^2\right)\ge9-5=4\)

    => \(2ab\ge4\)

    => \(ab\ge2\)

    <=> \(a^2b^2\ge4\)

    <=> \(4a^2b^2\ge16\)

    Plus \(4a^2b^2\ge16\) into \(a^4+b^4+2a^2b^2\ge25\)

    => \(a^4+b^4+6a^2b^2\ge41\)

    => Min = 41

    That is my opinion :v 

    Selected by MathYouLike
  • ...
    ¤« 03/04/2018 at 13:32

    {a+b=3a2+b2≥5⇒{a2+2ab+b2=9a4+2a2b2+b4≥25⇒{2ab=9−(a2+b2)a4+b4+2a2b2≥25

    We have : a2 + b2 ≥

     5

    => −(a2+b2)≤5

    => 9−(a2+b2)≥9−5=4

    => 2ab≥4

    => ab≥2

    <=> a2b2≥4

    <=> 4a2b2≥16

    Plus 4a2b2≥16

     into a4+b4+2a2b2≥25

    => a4+b4+6a2b2≥41

    => Min = 41

    That is my opinion :v

    There is something is wrong here 

    Change to :

    We have a2+b2≥5

    => 9−(a2+b2)≤4

    => 2ab≤4

    => ab≤2

    <=> a2b2≥4

    => 4a2b2≥16

  • ...
    Kaya Renger Coordinator 16/08/2017 at 22:06

    There is something is wrong here 

    Change to :

    We have \(a^2+b^2\ge5\)

    => \(9-\left(a^2+b^2\right)\le4\)

    => \(2ab\le4\)

    => \(ab\le2\)

    <=> \(a^2b^2\ge4\)

    => \(4a^2b^2\ge16\)

  • ...
    Phan Thanh Tinh Coordinator 17/08/2017 at 09:43

    Kaya Renger,you were wrong :

    \(-\left(a^2+b^2\right)\le-5\Rightarrow9-\left(a^2+b^2\right)\le4\)

    Based on your solution, we have \(4a^2b^2\le16;a^4+b^4+2a^2b^2\ge25\)

    So, we can't find the minimum value of P.

    Maybe your way is not right.

  • ...
    Kaya Renger Coordinator 16/08/2017 at 22:35

    No, it's my mistake , not you :V 

  • ...
    VTK-VangTrangKhuyet 16/08/2017 at 22:27

    Kaya Renger There is no mistake in the thread.

    You can find the answer in here : Câu hỏi của Đức Minh - Toán lớp 9 | Học trực tuyến


Post your answer

Please help Searching4You to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM