Searching4You
26/07/2017 at 12:06-
\(\left\{{}\begin{matrix}a+b=3\\a^2+b^2\ge5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a^2+2ab+b^2=9\\a^4+2a^2b^2+b^4\ge25\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2ab=9-\left(a^2+b^2\right)\\a^4+b^4+2a^2b^2\ge25\end{matrix}\right.\)
We have : a2 + b2 \(\ge\) 5
=> \(-\left(a^2+b^2\right)\le5\)
=> \(9-\left(a^2+b^2\right)\ge9-5=4\)
=> \(2ab\ge4\)
=> \(ab\ge2\)
<=> \(a^2b^2\ge4\)
<=> \(4a^2b^2\ge16\)
Plus \(4a^2b^2\ge16\) into \(a^4+b^4+2a^2b^2\ge25\)
=> \(a^4+b^4+6a^2b^2\ge41\)
=> Min = 41
That is my opinion :v
Selected by MathYouLike -
¤« 03/04/2018 at 13:32
{a+b=3a2+b2≥5⇒{a2+2ab+b2=9a4+2a2b2+b4≥25⇒{2ab=9−(a2+b2)a4+b4+2a2b2≥25
We have : a2 + b2 ≥
5
=> −(a2+b2)≤5
=> 9−(a2+b2)≥9−5=4
=> 2ab≥4
=> ab≥2
<=> a2b2≥4
<=> 4a2b2≥16
Plus 4a2b2≥16
into a4+b4+2a2b2≥25
=> a4+b4+6a2b2≥41
=> Min = 41
That is my opinion :v
There is something is wrong here
Change to :
We have a2+b2≥5
=> 9−(a2+b2)≤4
=> 2ab≤4
=> ab≤2
<=> a2b2≥4
=> 4a2b2≥16
-
There is something is wrong here
Change to :
We have \(a^2+b^2\ge5\)
=> \(9-\left(a^2+b^2\right)\le4\)
=> \(2ab\le4\)
=> \(ab\le2\)
<=> \(a^2b^2\ge4\)
=> \(4a^2b^2\ge16\)
-
Kaya Renger,you were wrong :
\(-\left(a^2+b^2\right)\le-5\Rightarrow9-\left(a^2+b^2\right)\le4\)
Based on your solution, we have \(4a^2b^2\le16;a^4+b^4+2a^2b^2\ge25\)
So, we can't find the minimum value of P.
Maybe your way is not right.
-
No, it's my mistake , not you :V
-
VTK-VangTrangKhuyet 16/08/2017 at 22:27
Kaya Renger There is no mistake in the thread.
You can find the answer in here : Câu hỏi của Đức Minh - Toán lớp 9 | Học trực tuyến