-
Searching4You 26/07/2017 at 11:53
Use Cauchy's inequality for positive numbes a,b,c.
\(a+b\ge2\sqrt{ab},b+c\ge2\sqrt{bc},c+a\ge2\sqrt{ca}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{ab}\cdot\sqrt{bc}\cdot\sqrt{ca}=8abc\)
\(\Rightarrow A=\dfrac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{1}{8}\)
\(MaxA=\dfrac{1}{8}\Leftrightarrow a=b=c>0\)
Selected by MathYouLike -
¤« 03/04/2018 at 13:32
Use Cauchy's inequality for positive numbes a,b,c.
a+b≥2ab−−√,b+c≥2bc−−√,c+a≥2ca−−√
⇒(a+b)(b+c)(c+a)≥8ab−−√⋅bc−−√⋅ca−−√=8abc
⇒A=abc(a+b)(b+c)(c+a)≤18
MaxA=18⇔a=b=c>0