MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

FoLder

26/07/2017 at 11:30
Answers
2
Follow

Let a,b,c > 0.

Find MAX of : \(A=\dfrac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)


Maximum


    List of answers
  • ...
    Searching4You 26/07/2017 at 11:53

    Use Cauchy's inequality for positive numbes a,b,c.

    \(a+b\ge2\sqrt{ab},b+c\ge2\sqrt{bc},c+a\ge2\sqrt{ca}\)

    \(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{ab}\cdot\sqrt{bc}\cdot\sqrt{ca}=8abc\)

    \(\Rightarrow A=\dfrac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{1}{8}\)

    \(MaxA=\dfrac{1}{8}\Leftrightarrow a=b=c>0\)

    Selected by MathYouLike
  • ...
    ¤« 03/04/2018 at 13:32

    Use Cauchy's inequality for positive numbes a,b,c.

    a+b≥2ab−−√,b+c≥2bc−−√,c+a≥2ca−−√

    ⇒(a+b)(b+c)(c+a)≥8ab−−√⋅bc−−√⋅ca−−√=8abc

    ⇒A=abc(a+b)(b+c)(c+a)≤18

    MaxA=18⇔a=b=c>0


Post your answer

Please help FoLder to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM