-
FA KAKALOTS 28/01/2018 at 22:06
My try: WLOG a≥b≥c hence we have: am−n≥bm−n≥cm−n
⇒anbn+cn≥bncn+an≥cnan+bn
By Chebyshev's inequality we have:
∑ambn+cn=∑am−n⋅anbn+cn
≥am−n+bm−n+cm−n3⋅∑anbn+cn
≥∑am−n+bm−n+cm−n2
We're done when a=b=c
P/s: This's discuss not A4 (Auto Ask Auto Answer)
-
Aim Egst 25/07/2017 at 19:12
My try: WLOG \(a\ge b\ge c\) hence we have: \(a^{m-n}\ge b^{m-n}\ge c^{m-n}\)
\(\Rightarrow\dfrac{a^n}{b^n+c^n}\ge\dfrac{b^n}{c^n+a^n}\ge\dfrac{c^n}{a^n+b^n}\)
By Chebyshev's inequality we have:
\(\text{∑}\dfrac{a^m}{b^n+c^n}=\text{∑}a^{m-n}\cdot\dfrac{a^n}{b^n+c^n}\)
\(\ge\dfrac{a^{m-n}+b^{m-n}+c^{m-n}}{3}\cdot\text{∑}\dfrac{a^n}{b^n+c^n}\)
\(\ge\text{∑}\dfrac{a^{m-n}+b^{m-n}+c^{m-n}}{2}\)
We're done when \(a=b=c\)
P/s: This's discuss not A4 (Auto Ask Auto Answer)