MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Aim Egst

25/07/2017 at 19:04
Answers
2
Follow

Given \(m\ge n>0\) and \(a,b,c\) are positive real numbers. Prove this inequality \(\dfrac{a^m}{b^n+c^n}+\dfrac{b^m}{c^n+a^n}+\dfrac{c^m}{a^n+b^n}\ge\dfrac{a^{m-n}+b^{m-n}+c^{m-n}}{2}\)

 it's a general formula of Nesbitt's inequality, i have a method but i need more :)), Help me, thanks 

 


inequality


    List of answers
  • ...
    FA KAKALOTS 28/01/2018 at 22:06

    My try: WLOG a≥b≥c hence we have: am−n≥bm−n≥cm−n

    ⇒anbn+cn≥bncn+an≥cnan+bn

    By Chebyshev's inequality we have: 

    ∑ambn+cn=∑am−n⋅anbn+cn

    ≥am−n+bm−n+cm−n3⋅∑anbn+cn

    ≥∑am−n+bm−n+cm−n2

    We're done when a=b=c

    P/s: This's discuss not A4 (Auto Ask Auto Answer)

  • ...
    Aim Egst 25/07/2017 at 19:12

    My try: WLOG \(a\ge b\ge c\) hence we have: \(a^{m-n}\ge b^{m-n}\ge c^{m-n}\)

    \(\Rightarrow\dfrac{a^n}{b^n+c^n}\ge\dfrac{b^n}{c^n+a^n}\ge\dfrac{c^n}{a^n+b^n}\)

    By Chebyshev's inequality we have: 

    \(\text{∑}\dfrac{a^m}{b^n+c^n}=\text{∑}a^{m-n}\cdot\dfrac{a^n}{b^n+c^n}\)

    \(\ge\dfrac{a^{m-n}+b^{m-n}+c^{m-n}}{3}\cdot\text{∑}\dfrac{a^n}{b^n+c^n}\)

    \(\ge\text{∑}\dfrac{a^{m-n}+b^{m-n}+c^{m-n}}{2}\)

    We're done when \(a=b=c\)

    P/s: This's discuss not A4 (Auto Ask Auto Answer)


Post your answer

Please help Aim Egst to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM