Võ Thu Thảo
25/07/2017 at 09:44-
Dao Trong Luan 25/07/2017 at 13:23
We have:
\(1+\dfrac{1+2}{2}+\dfrac{1+2+3}{3}+...+\dfrac{1+2+3+...+199}{199}\)
\(=1+\dfrac{2\cdot3:2}{2}+\dfrac{3\cdot4:2}{2}+...+\dfrac{199\cdot200:2}{199}\)
\(=1+\dfrac{3}{2}+\dfrac{4}{2}+\dfrac{5}{2}+...+\dfrac{200}{2}\)
\(=\dfrac{2}{2}+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{200}{2}\)\(=\dfrac{2+3+4+5+...+200}{2}=\dfrac{\left[\left(200-2+1\right):2\right]\left(2+200\right)}{2}=\dfrac{\dfrac{199}{2}\cdot202}{2}=\dfrac{20099}{2}\)
Selected by MathYouLike -
Answer of Dao Trong Luan must be \(\dfrac{3.4:2}{2}\) to \(\dfrac{3.4:2}{3}\).