MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Summer Clouds moderators

25/07/2017 at 08:51
Answers
2
Follow

Know that \(a+b+c=0\), prove that \(\left(a^2+b^2+c^2\right)^2=2\left(a^4+b^4+c^4\right)\).




    List of answers
  • ...
    Aim Egst 25/07/2017 at 15:26

    Từ \(a+b+c=0\Rightarrow b+c=-a\)

    \(\Rightarrow\left(b+c\right)^2=\left(-a\right)^2\Rightarrow b^2+2bc+c^2=a^2\)

    \(\Rightarrow b^2+c^2-a^2=-2bc\)\(\Rightarrow\left(b^2+c^2-a^2\right)^2=\left(-2bc\right)^2\)

    \(\Rightarrow b^4+c^4+a^4+2b^2c^2-2a^2b^2-2a^2c^2=4b^2c^2\)

    \(\Rightarrow a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2\)

    \(\Rightarrow2(a^4+b^4+c^4)=a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2\)

    \(\Rightarrow2(a^4+b^4+c^4)=(a^2+b^2+c^2)^2\)

  • ...
    Faded 28/01/2018 at 21:29

    Từ a+b+c=0⇒b+c=−a

    ⇒(b+c)2=(−a)2⇒b2+2bc+c2=a2

    ⇒b2+c2−a2=−2bc

    ⇒(b2+c2−a2)2=(−2bc)2

    ⇒b4+c4+a4+2b2c2−2a2b2−2a2c2=4b2c2

    ⇒a4+b4+c4=2a2b2+2b2c2+2c2a2

    ⇒2(a4+b4+c4)=a4+b4+c4+2a2b2+2b2c2+2c2a2

    ⇒2(a4+b4+c4)=(a2+b2+c2)2


Post your answer

Please help Summer Clouds to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM