MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Macedoi

24/07/2017 at 18:42
Answers
1
Follow

Given $a,b,c>0$. Prove that $\frac{a^3b}{3a+b}+\frac{b^3c}{3b+c}+\frac{c^3a}{3c+a}\ge \frac{a^2bc}{2a+b+c}+\frac{ab^2c}{a+2b+c}+\frac{abc^2}{a+b+2c}$

*)Source: https://olm.vn/hoi-dap/question/999979.html

I tried AM-GM but unsuccess 


inequality


    List of answers
  • ...
    Ely Seon 05/08/2018 at 09:54

    Considering the right expression we have  \(\dfrac{a^2bc}{2a+b+c}+\dfrac{ab^2c}{a+2b+c}+\dfrac{abc^2}{a+b+2c}\)

    \(=abc\left(\dfrac{a}{a+b+a+c}+\dfrac{b}{a+b+b+c}+\dfrac{c}{a+c+b+c}\right)\)

    Apply Cauchy Schwarz inequality we have the formula \(\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge\dfrac{1}{a+b}\)

    Apply this formula to the following expression we have

    \(\dfrac{a}{a+b+a+c}\le\dfrac{a}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)\)\(;\dfrac{b}{a+b+b+c}\le\dfrac{b}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)\)

    \(\dfrac{c}{a+c+c+a}\le\dfrac{c}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{c+a}\right)\)

    \(\Rightarrow\dfrac{a}{a+b+a+c}+\dfrac{b}{a+b+b+c}+\dfrac{c}{a+c+c+a}\le\dfrac{a+b}{4\left(a+b\right)}+\dfrac{b+c}{4\left(b+c\right)}+\dfrac{c+a}{4\left(c+a\right)}=\dfrac{3}{4}\)

    \(\Rightarrow abc\left(\dfrac{a}{a+b+a+c}+\dfrac{b}{a+b+b+c}+\dfrac{c}{a+c+b+c}\right)\le\dfrac{3abc}{4}\)

    We now need to prove that \(\dfrac{a^3b}{3a+b}+\dfrac{b^3c}{3b+c}+\dfrac{c^3a}{3c+a}\ge\dfrac{3abc}{4}\)

    \(\Leftrightarrow\dfrac{a^3b}{3a+b}-\dfrac{abc}{4}+\dfrac{b^3c}{3b+c}-\dfrac{abc}{4}+\dfrac{c^3a}{3c+a}-\dfrac{abc}{4}\ge0\)

    \(\Leftrightarrow\dfrac{a^3bc}{c\left(3a+b\right)}-\dfrac{abc}{4}+\dfrac{ab^3c}{a\left(3b+c\right)}-\dfrac{abc}{4}+\dfrac{c^3ab}{b\left(3c+a\right)}-\dfrac{abc}{4}\ge0\)

    \(\Leftrightarrow abc\left[\dfrac{a^2}{c\left(3a+b\right)}-\dfrac{1}{4}\right]+abc\left[\dfrac{b^2}{a\left(3b+c\right)}-\dfrac{1}{4}\right]+abc\left[\dfrac{c^2}{b\left(3c+a\right)}-\dfrac{1}{4}\right]\ge0\)

    \(\Leftrightarrow abc\left[\dfrac{a^2}{c\left(3a+b\right)}+\dfrac{b^2}{a\left(3b+c\right)}+\dfrac{c^2}{b\left(3c+a\right)}-\dfrac{3}{4}\right]\ge0\)

    \(\Leftrightarrow\dfrac{a^2}{c\left(3a+b\right)}+\dfrac{b^2}{a\left(3b+c\right)}+\dfrac{c^2}{b\left(3c+a\right)}\ge\dfrac{3}{4}\)

    Apply Cauchy Schwarz inequality Engel form we have 

    \(\dfrac{a^2}{c\left(3a+b\right)}+\dfrac{b^2}{a\left(3b+c\right)}+\dfrac{c^2}{b\left(3c+a\right)}\ge\dfrac{\left(a+b+c\right)^2}{4\left(ab+bc+ac\right)}\)

    According to the Cauchy's consequence, we have \(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

    \(\Rightarrow\dfrac{\left(a+b+c\right)^2}{4\left(ab+bc+ac\right)}\ge\dfrac{3\left(ab+bc+ac\right)}{4\left(ab+bc+ac\right)}=\dfrac{3}{4}\)

    \(\Rightarrow\dfrac{a^2}{c\left(3a+b\right)}+\dfrac{b^2}{a\left(3b+c\right)}+\dfrac{c^2}{b\left(3c+a\right)}\ge\dfrac{3}{4}\)

    So now we have \(\dfrac{a^3b}{3a+b}+\dfrac{b^3c}{3b+c}+\dfrac{c^3a}{3c+a}\ge\dfrac{3abc}{4}\)

    But \(abc\left(\dfrac{a}{a+b+a+c}+\dfrac{b}{a+b+b+c}+\dfrac{c}{a+c+b+c}\right)\le\dfrac{3abc}{4}\)

    \(\Rightarrow\dfrac{a^3b}{3a+b}+\dfrac{b^3c}{3b+c}+\dfrac{c^3a}{3c+a}\ge\dfrac{a^2bc}{2a+b+c}+\dfrac{ab^2c}{a+2b+c}+\dfrac{abc^2}{a+b+2c}\) ( things must be proven.)


Post your answer

Please help Macedoi to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM