MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Summer Clouds moderators

24/07/2017 at 09:02
Answers
2
Follow

Find \(n\in N\) satisty:
\(2^1.2^2.2^3...2^n=2^{5050}\)




    List of answers
  • ...
    Lê Quốc Trần Anh Coordinator 24/07/2017 at 09:23

    Sorry, can I answer again?

    \(2^1.2^2.2^3...2^n=2^{5050}\) => \(2^{1+2+3+...+n}=2^{5050}\)

    => \(1+2+3+...+n=5050\)

    In the series, there are: \(\left(n-1\right):1+1\) numbers.

    => \(n.n+1:2=5050\)

    => \(n.n+1=5050.2=10100\)

    We saw that: \(100.101=5050\) => \(n=100\)

    Selected by MathYouLike
  • ...
    Lê Quốc Trần Anh Coordinator 24/07/2017 at 09:11

    \(2^1.2^2.2^3...2^n=2^{5050}\) => \(2^{1+2+3+...+n}=2^{5050}\)

    => \(1+2+3+...+n=5050\)

    => \(n=100\)


Post your answer

Please help Summer Clouds to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM