MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Kayasari Ryuunosuke Coordinator

22/07/2017 at 13:30
Answers
1
Follow

Give a,b,c,d are positive integer numbers so that \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+d}+\dfrac{d}{d+a}=2\)

Prove that :

abcd is the square number 




    List of answers
  • ...
    đỗ ngọc ánh 23/07/2017 at 07:41

    \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+d}+\dfrac{d}{d+a}=2\Rightarrow\left(\dfrac{a}{a+b}+\dfrac{c}{c+d}-1\right)+\left(\dfrac{b}{b+c}+\dfrac{d}{d+a}-1\right)=0\)
    \(\dfrac{ac-bd}{\left(a+b\right)\left(c+d\right)}-\dfrac{ac-bd}{\left(b+c\right)\left(a+d\right)}=0\)
    =>\(\left(ac-bd\right).\left(\dfrac{1}{\left(a+b\right)\left(c+d\right)}-\dfrac{1}{\left(a+d\right)\left(b+c\right)}\right)=0\)=>\(\left(ac-bd\right).\left(\dfrac{ab+ac+bd+dc-ac-ad-bc-bd}{\left(a+b\right)\left(b+c\right)\left(c+d\right)\left(d+a\right)}\right)=0\)

    =>(ac-bd).(ab+cd-ad-bc)=0
    =>(ac-bd)(a-c)(b-d)
    vì \(a\ne b\ne c\ne d\Rightarrow a-c\ne0;b-d\ne0\)
    suy ra ac-bd suy ra ac.bd=(ac)2=(bd)2

     
     

Post your answer

Please help Kayasari Ryuunosuke to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM