MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Summer Clouds moderators

22/07/2017 at 11:51
Answers
1
Follow

Given a triangle  with the sides are in the ratio of 5:13:12 and the perimeter of its is 160. What is the area of the triangle.


Math Violympic


    List of answers
  • ...
    Phan Thanh Tinh Coordinator 22/07/2017 at 13:03

    Let a,b,c,p,S be the length of 3 sides,the semiperimeter,the area of the triangle respectively,then :

    \(\circledast a+b+c=160\) ; \(\circledast\dfrac{a}{5}=\dfrac{b}{13}=\dfrac{c}{12}\); \(\circledast p=\dfrac{160}{2}=80\)

    Applying the property of sequence of equivalent ratios,we have :

    \(\dfrac{a}{5}=\dfrac{b}{13}=\dfrac{c}{12}=\dfrac{a+b+c}{5+13+12}=\dfrac{160}{30}=\dfrac{16}{3}\)

    \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{16}{3}.5=\dfrac{80}{3}\\b=\dfrac{16}{3}.13=\dfrac{208}{3}\\c=\dfrac{16}{3}.12=64\end{matrix}\right.\)

    Applying the Heron's formula,we have :

    \(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)

    \(S=\sqrt{80\left(80-\dfrac{80}{3}\right)\left(80-\dfrac{208}{3}\right)\left(80-64\right)}\)

    \(=\sqrt{80.\dfrac{160}{3}.\dfrac{32}{9}.16}=\dfrac{2560}{3}=853\dfrac{1}{3}\)


Post your answer

Please help Summer Clouds to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM