MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Kantai Collection

19/07/2017 at 14:16
Answers
3
Follow

Give a + b + c = 0

Prove that : 

a3 + b3 + c3 = 3abc 




    List of answers
  • ...
    Aim Egst 19/07/2017 at 14:22

    From \(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)

    \(\Rightarrow a^3+3ab(a+b)+b^3+c^3-3abc-3ab(a+b)=0\)

    \(\Rightarrow (a+b)^3+c^3-3ab(a+b+c)=0\)

    \(\Rightarrow (a+b+c)(a^2+2ab+b^2-ab-ac+c^2)-3ab(a+b+c)=0\)

    \(\Rightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0\)

    It's right because \(a+b+c=0\)

    Selected by MathYouLike
  • ...
    Kayasari Ryuunosuke Coordinator 19/07/2017 at 14:21

    We have :

    a3 + b3 + c3 = 3abc 

    a3 + b3 + c3 - 3abc = 0

    (a3 + 3a2b + 3ab2 + b3) + c3 - 3a2b - 3ab2 - 3abc = 0

    (a + b)3 + c3 - 3ab.(a + b + c) = 0

    [(a + b) + c].[(a + b)2 - c.(a + b) + c2] - 3ab(a + b + c) = 0

    (a + b + c).[a2 + 2ab + b2 - ac - bc + c2] - 3ab(a + b + c) = 0

    (a + b + c).[a2 + b2 + c2 - bc - ca + 2ab - 3ab] = 0

    (a + b + c).[a2 + b2 + c2 - ab - bc - ca] = 0

    That is right , because a + b + c = 0

    So a3 + b3 + c3 = 3abc

    With a + b + c = 0

    Kantai Collection selected this answer.
  • ...
    Lê Quốc Trần Anh Coordinator 19/07/2017 at 14:27

    If \(a,b,c\in N\) then I can answer it.

    \(a+b+c=0\)

    => \(a=b=c=0\).

    Because \(\forall x\) in the case \(0^x=0\) and a number multiplies by \(0\) equals to \(0\).

    => \(a^3+b^3+c^3=3abc=0\left(proved\right)\)


Post your answer

Please help Kantai Collection to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM