Kantai Collection
19/07/2017 at 14:16-
Aim Egst 19/07/2017 at 14:22
From \(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow a^3+3ab(a+b)+b^3+c^3-3abc-3ab(a+b)=0\)
\(\Rightarrow (a+b)^3+c^3-3ab(a+b+c)=0\)
\(\Rightarrow (a+b+c)(a^2+2ab+b^2-ab-ac+c^2)-3ab(a+b+c)=0\)
\(\Rightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0\)
It's right because \(a+b+c=0\)
Selected by MathYouLike -
We have :
a3 + b3 + c3 = 3abc
a3 + b3 + c3 - 3abc = 0
(a3 + 3a2b + 3ab2 + b3) + c3 - 3a2b - 3ab2 - 3abc = 0
(a + b)3 + c3 - 3ab.(a + b + c) = 0
[(a + b) + c].[(a + b)2 - c.(a + b) + c2] - 3ab(a + b + c) = 0
(a + b + c).[a2 + 2ab + b2 - ac - bc + c2] - 3ab(a + b + c) = 0
(a + b + c).[a2 + b2 + c2 - bc - ca + 2ab - 3ab] = 0
(a + b + c).[a2 + b2 + c2 - ab - bc - ca] = 0
That is right , because a + b + c = 0
So a3 + b3 + c3 = 3abc
With a + b + c = 0
Kantai Collection selected this answer. -
If \(a,b,c\in N\) then I can answer it.
\(a+b+c=0\)
=> \(a=b=c=0\).
Because \(\forall x\) in the case \(0^x=0\) and a number multiplies by \(0\) equals to \(0\).
=> \(a^3+b^3+c^3=3abc=0\left(proved\right)\)