MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Kayasari Ryuunosuke Coordinator

19/07/2017 at 11:05
Answers
2
Follow

Find x if :

a) \(\left(x-1\right)\left(3-x\right)>0\)

b) xy = x + y 




    List of answers
  • ...
    Aim Egst 19/07/2017 at 11:16

    a)\(\left(x-1\right)\left(3-x\right)>0\)

    \(\Leftrightarrow-\left(x-1\right)\left(x-3\right)>0\)

    \(\Leftrightarrow\left(x-1\right)\left(x-3\right)< 0\)

    \(\Rightarrow\)\(x-1;x-3\) are the numbers opposite the sign

    We have: \(x-1>x-3\forall x\)

    \(\Rightarrow\left\{{}\begin{matrix}x-1>0\\x-3< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x>1\\x< 3\end{matrix}\right.\)

    b)\(xy=x+y\)

    \(\Rightarrow xy-x-y+1=1\)

    \(\Rightarrow x\left(y-1\right)-\left(y-1\right)=1\)

    \(\Rightarrow\left(x-1\right)\left(y-1\right)=1\)

    \(\Rightarrow\left\{{}\begin{matrix}x-1=1\\y-1=1\end{matrix}\right.\)\(;\left\{{}\begin{matrix}x-1=-1\\y-1=-1\end{matrix}\right.\)

    \(\Rightarrow\left[{}\begin{matrix}x=y=2\\x=y=0\end{matrix}\right.\)

    Kayasari Ryuunosuke selected this answer.
  • ...
    Phan Thanh Tinh Coordinator 19/07/2017 at 11:25

    a) \(\left(x-1\right)\left(3-x\right)>0\),so x - 1 and 3 - x are 2 sign numbers

    1st case : \(\left\{{}\begin{matrix}x-1>0\\3-x>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>1\\x< 3\end{matrix}\right.\)\(\Rightarrow1< x< 3\)

    2nd case : \(\left\{{}\begin{matrix}x-1< 0\\3-x< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< 1\\x>3\end{matrix}\right.\)\(\Rightarrow x\in\varnothing\)

    Hence, 1 < x < 3

    b) \(xy=x+y\Leftrightarrow xy-x-y=0\)\(\Leftrightarrow x\left(y-1\right)-\left(y-1\right)=1\)

    \(\Leftrightarrow\left(x-1\right)\left(y-1\right)=1\)\(\Rightarrow x-1=\dfrac{1}{y-1}\Rightarrow x=\dfrac{y}{y-1}\)\(\left(y\ne1\right)\)

    If you give \(x\in Z\),the answer of question a) is x = 2 and I'll solve the question b) again


Post your answer

Please help Kayasari Ryuunosuke to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM