MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Summer Clouds moderators

19/07/2017 at 09:02
Answers
2
Follow

a) Calculate: \(A=5+5^2+5^3+5^4+......+5^{100}\)
b) Prove that A divisible 30.


Power


    List of answers
  • ...
    Kayasari Ryuunosuke Coordinator 19/07/2017 at 09:08

    a) \(A=5+5^2+5^3+....+5^{100}\)

    \(5A=5^2+5^3+....+5^{100}+5^{101}\)

    \(5A-A=\left(5^2+5^3+5^4+......+5^{101}\right)-\left(5+5^2+5^3+....+5^{100}\right)\)

    \(4A=5^{101}-5\)

    \(A=\dfrac{5^{101}-5}{4}\)

    b) \(A=5+5^2+5^3+....+5^{100}\)

    \(A=\left(5+5^2\right)+\left(5^3+5^4\right)+....+\left(5^{99}+5^{100}\right)\)

    \(A=\left(5+25\right)+5^2.\left(5+25\right)+....+5^{98}.\left(5+25\right)\)

    \(A=30+5^2.30+.....+5^{98}.30\)

    \(A=30.\left(1+5^2+....+5^{98}\right)⋮30\)

    \(\Rightarrow A⋮30\)

    Selected by MathYouLike
  • ...
    FA KAKALOTS 08/02/2018 at 22:00

    a) A=5+52+53+....+5100

    5A=52+53+....+5100+5101

    5A−A=(52+53+54+......+5101)−(5+52+53+....+5100)

    4A=5101−5

    A=5101−54

    b) A=5+52+53+....+5100

    A=(5+52)+(53+54)+....+(599+5100)

    A=(5+25)+52.(5+25)+....+598.(5+25)

    A=30+52.30+.....+598.30

    A=30.(1+52+....+598)⋮30

    ⇒A⋮30


Post your answer

Please help Summer Clouds to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM