Summer Clouds moderators
19/07/2017 at 09:02-
a) \(A=5+5^2+5^3+....+5^{100}\)
\(5A=5^2+5^3+....+5^{100}+5^{101}\)
\(5A-A=\left(5^2+5^3+5^4+......+5^{101}\right)-\left(5+5^2+5^3+....+5^{100}\right)\)
\(4A=5^{101}-5\)
\(A=\dfrac{5^{101}-5}{4}\)
b) \(A=5+5^2+5^3+....+5^{100}\)
\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+....+\left(5^{99}+5^{100}\right)\)
\(A=\left(5+25\right)+5^2.\left(5+25\right)+....+5^{98}.\left(5+25\right)\)
\(A=30+5^2.30+.....+5^{98}.30\)
\(A=30.\left(1+5^2+....+5^{98}\right)⋮30\)
\(\Rightarrow A⋮30\)
Selected by MathYouLike -
FA KAKALOTS 08/02/2018 at 22:00
a) A=5+52+53+....+5100
5A=52+53+....+5100+5101
5A−A=(52+53+54+......+5101)−(5+52+53+....+5100)
4A=5101−5
A=5101−54
b) A=5+52+53+....+5100
A=(5+52)+(53+54)+....+(599+5100)
A=(5+25)+52.(5+25)+....+598.(5+25)
A=30+52.30+.....+598.30
A=30.(1+52+....+598)⋮30
⇒A⋮30