-
Searching4You 18/07/2017 at 16:50
First, call I the intersection of AM and AN.
We have : \(4BN^2=4AB^2+AC^2\)
\(AI^2=AB^2-BI^2=AB^2-\dfrac{4}{9}BN^2\Rightarrow\dfrac{4}{9}AM^2=AB^2-\dfrac{4}{9}\left(AB^2+\dfrac{1}{4}AC^2\right)\)
\(\Rightarrow\dfrac{1}{9}BC^2=\dfrac{5}{9}AB^2-\dfrac{1}{9}AC^2\)
\(\Rightarrow BC^2=5AB^2-AC^2\) and \(BC^2=AB^2+AC^2\Rightarrow AC^2=2AB^2\)
From here we can know that AC = 4.
Good Luck !
Kiloooo selected this answer.