Searching4You
18/07/2017 at 16:38-
Aim Egst 18/07/2017 at 17:21
By AM-GM we have:
\(E=\dfrac{4a}{b+c-a}+\dfrac{4b}{c+a-b}+\dfrac{4c}{a+b-c}\)
\(=4\left(\dfrac{a}{b+c-a}+\dfrac{b}{c+a-b}+\dfrac{4c}{a+b-c}\right)\)
\(\ge4\cdot3\sqrt[3]{\dfrac{abc}{\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}}\)
\(\ge4\cdot3\sqrt[3]{\dfrac{abc}{abc}}=4\cdot3=12\)
Need prove \(\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\le abc\)
The last inequality is right follow Schur's inequality
\("="\Leftrightarrow a=b=c\)