MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Searching4You

18/07/2017 at 16:38
Answers
1
Follow

Another good question here :D

Let a,b,c be the lengths of triangle ABC.

The triangle ABC must satisfy what condition that the expression 

\(E=\dfrac{4a}{b+c-a}+\dfrac{4b}{c+a-b}+\dfrac{4c}{a+b-c}\)

has the minimum value ? Find that minimum value.




    List of answers
  • ...
    Aim Egst 18/07/2017 at 17:21

    By AM-GM we have:

    \(E=\dfrac{4a}{b+c-a}+\dfrac{4b}{c+a-b}+\dfrac{4c}{a+b-c}\)

    \(=4\left(\dfrac{a}{b+c-a}+\dfrac{b}{c+a-b}+\dfrac{4c}{a+b-c}\right)\)

    \(\ge4\cdot3\sqrt[3]{\dfrac{abc}{\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}}\)

    \(\ge4\cdot3\sqrt[3]{\dfrac{abc}{abc}}=4\cdot3=12\)

    Need prove \(\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\le abc\)

    The last inequality is right follow Schur's inequality

    \("="\Leftrightarrow a=b=c\)


Post your answer

Please help Searching4You to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM