MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Kayasari Ryuunosuke Coordinator

16/07/2017 at 20:59
Answers
3
Follow

Give a,b,c,d are real numbers and abcd = 1

Prove that : \(a^3+b^3+c^3+d^3\ge a+b+c+d\)




    List of answers
  • ...
    Kayasari Ryuunosuke Coordinator 17/07/2017 at 20:28

    Let \(A=\dfrac{a^3+b^3+c^3+d^3}{a+b+c+d}\)

    \(A=\dfrac{a^3}{a+b+c+d}+\dfrac{b^3}{a+b+c+d}+\dfrac{c^3}{a+b+c+d}+\dfrac{d^3}{a+b+c+d}\)

    \(A=\dfrac{a^4}{a^2+ab+ac+ad}+\dfrac{b^4}{ab+b^2+bc+bd}+\dfrac{c^4}{ac+bc+c^2+cd}+\dfrac{d^4}{ad+bd+cd+d^2}\)

    Following Schwarz's inequality , we have :

    \(A\ge\dfrac{\left(a^2+b^2+c^2+d^2\right)^2}{a^2+b^2+c^2+d^2+2\left(ab+ac+ad+bc+bd+cd\right)}=\dfrac{\left(a^2+b^2+c^2+d^2\right)^2}{\left(a+b+c+d\right)^2}\)

    Following Bunyakovsky's inequality , we have :

    \(\left(a^2+b^2+c^2+d^2\right)\left(1+1+1+1\right)\ge\left(a+b+c+d\right)^2\)

    \(\Rightarrow4\left(a^2+b^2+c^2+d^2\right)\ge\left(a+b+c+d\right)^2\)

    \(\Rightarrow A\ge\dfrac{\left(a^2+b^2+c^2+d^2\right)^2}{4\left(a^2+b^2+c^2+d^2\right)}=\dfrac{a^2+b^2+c^2+d^2}{4}\ge\dfrac{4\sqrt[4]{a^2b^2c^2d^2}}{4}=\dfrac{4.1}{4}=1\)

    \(\Rightarrow a^3+b^3+c^3+d^3\ge a+b+c+d\)

    Equality occurs when :

    a = b = c = d = 1

    Selected by MathYouLike
  • ...
    Faded 28/01/2018 at 21:32

    Let A=a3+b3+c3+d3a+b+c+d

    A=a3a+b+c+d+b3a+b+c+d+c3a+b+c+d+d3a+b+c+d

    A=a4a2+ab+ac+ad+b4ab+b2+bc+bd+c4ac+bc+c2+cd+d4ad+bd+cd+d2

    Following Schwarz's inequality , we have :

    A≥(a2+b2+c2+d2)2a2+b2+c2+d2+2(ab+ac+ad+bc+bd+cd)=(a2+b2+c2+d2)2(a+b+c+d)2

    Following Bunyakovsky's inequality , we have :

    (a2+b2+c2+d2)(1+1+1+1)≥(a+b+c+d)2

    ⇒4(a2+b2+c2+d2)≥(a+b+c+d)2

    ⇒A≥(a2+b2+c2+d2)24(a2+b2+c2+d2)=a2+b2+c2+d24≥44√a2b2c2d24=4.14=1

    ⇒a3+b3+c3+d3≥a+b+c+d

    Equality occurs when :

    a = b = c = d = 1

  • ...
    Aim Egst 17/07/2017 at 23:01

    you need write source answer Câu hỏi của Kurosaki Akatsu - Toán lớp 9 - Học toán với OnlineMath


Post your answer

Please help Kayasari Ryuunosuke to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM