Kayasari Ryuunosuke Coordinator
16/07/2017 at 20:59-
Let \(A=\dfrac{a^3+b^3+c^3+d^3}{a+b+c+d}\)
\(A=\dfrac{a^3}{a+b+c+d}+\dfrac{b^3}{a+b+c+d}+\dfrac{c^3}{a+b+c+d}+\dfrac{d^3}{a+b+c+d}\)
\(A=\dfrac{a^4}{a^2+ab+ac+ad}+\dfrac{b^4}{ab+b^2+bc+bd}+\dfrac{c^4}{ac+bc+c^2+cd}+\dfrac{d^4}{ad+bd+cd+d^2}\)
Following Schwarz's inequality , we have :
\(A\ge\dfrac{\left(a^2+b^2+c^2+d^2\right)^2}{a^2+b^2+c^2+d^2+2\left(ab+ac+ad+bc+bd+cd\right)}=\dfrac{\left(a^2+b^2+c^2+d^2\right)^2}{\left(a+b+c+d\right)^2}\)
Following Bunyakovsky's inequality , we have :
\(\left(a^2+b^2+c^2+d^2\right)\left(1+1+1+1\right)\ge\left(a+b+c+d\right)^2\)
\(\Rightarrow4\left(a^2+b^2+c^2+d^2\right)\ge\left(a+b+c+d\right)^2\)
\(\Rightarrow A\ge\dfrac{\left(a^2+b^2+c^2+d^2\right)^2}{4\left(a^2+b^2+c^2+d^2\right)}=\dfrac{a^2+b^2+c^2+d^2}{4}\ge\dfrac{4\sqrt[4]{a^2b^2c^2d^2}}{4}=\dfrac{4.1}{4}=1\)
\(\Rightarrow a^3+b^3+c^3+d^3\ge a+b+c+d\)
Equality occurs when :
a = b = c = d = 1
Selected by MathYouLike -
Faded 28/01/2018 at 21:32
Let A=a3+b3+c3+d3a+b+c+d
A=a3a+b+c+d+b3a+b+c+d+c3a+b+c+d+d3a+b+c+d
A=a4a2+ab+ac+ad+b4ab+b2+bc+bd+c4ac+bc+c2+cd+d4ad+bd+cd+d2
Following Schwarz's inequality , we have :
A≥(a2+b2+c2+d2)2a2+b2+c2+d2+2(ab+ac+ad+bc+bd+cd)=(a2+b2+c2+d2)2(a+b+c+d)2
Following Bunyakovsky's inequality , we have :
(a2+b2+c2+d2)(1+1+1+1)≥(a+b+c+d)2
⇒4(a2+b2+c2+d2)≥(a+b+c+d)2
⇒A≥(a2+b2+c2+d2)24(a2+b2+c2+d2)=a2+b2+c2+d24≥44√a2b2c2d24=4.14=1
⇒a3+b3+c3+d3≥a+b+c+d
Equality occurs when :
a = b = c = d = 1
-
Aim Egst 17/07/2017 at 23:01
you need write source answer Câu hỏi của Kurosaki Akatsu - Toán lớp 9 - Học toán với OnlineMath