MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Ace Legona

16/07/2017 at 12:57
Answers
4
Follow

Prove that with \(n>3\) and \(x_1;x_2;...;x_n>0\) satisfy \(\Pi^n_{i=1}x_i=1\), so \(\dfrac{1}{1+x_1+x_1x_2}+\dfrac{1}{1+x_2+x_2x_3}+...+\dfrac{1}{1+x_n+x_nx_1}>1\)

- Source: The problem from Russia,2004

P/s: Spammer go away, Contraindication for young buffalo !!

 

 


inequality


    List of answers
  • ...
    FA KAKALOTS 28/01/2018 at 22:06

    Yes but it's not mine, i need new method :)

    Let x1=a2a1;x2=a3a2;...;xn=a1an

    We need prove a1a1+a2+a3+a2a2+a3+a4+...+anan+a1+a2>1

    It's right because n>3

     and ai+ai+1+ai+2<a1+a2+...+an∀i

  • ...
    Aim Egst 18/07/2017 at 11:32

    Yes but it's not mine, i need new method :)

    Let \(x_1=\dfrac{a_2}{a_1};x_2=\dfrac{a_3}{a_2};...;x_n=\dfrac{a_1}{a_n}\)

    We need prove \(\dfrac{a_1}{a_1+a_2+a_3}+\dfrac{a_2}{a_2+a_3+a_4}+...+\dfrac{a_n}{a_n+a_1+a_2}>1\)

    It's right because \(n>3\) and \(a_i+a_{i+1}+a_{i+2}< a_1+a_2+...+a_n\forall i\)

  • ...
    Summer Clouds moderators 18/07/2017 at 08:33

    Ace Legona : you can share a answer of problem.

  • ...
    Summer Clouds moderators 16/07/2017 at 14:57


    This is a good and difficult problem.
     


Post your answer

Please help Ace Legona to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM