Ace Legona
16/07/2017 at 12:57-
FA KAKALOTS 28/01/2018 at 22:06
Yes but it's not mine, i need new method :)
Let x1=a2a1;x2=a3a2;...;xn=a1an
We need prove a1a1+a2+a3+a2a2+a3+a4+...+anan+a1+a2>1
It's right because n>3
and ai+ai+1+ai+2<a1+a2+...+an∀i
-
Aim Egst 18/07/2017 at 11:32
Yes but it's not mine, i need new method :)
Let \(x_1=\dfrac{a_2}{a_1};x_2=\dfrac{a_3}{a_2};...;x_n=\dfrac{a_1}{a_n}\)
We need prove \(\dfrac{a_1}{a_1+a_2+a_3}+\dfrac{a_2}{a_2+a_3+a_4}+...+\dfrac{a_n}{a_n+a_1+a_2}>1\)
It's right because \(n>3\) and \(a_i+a_{i+1}+a_{i+2}< a_1+a_2+...+a_n\forall i\)
-
Ace Legona : you can share a answer of problem.
-
This is a good and difficult problem.