Kantai Collection
16/07/2017 at 09:13-
Good problem ! Thank you !
Use AM-GM for three numbers , we have :
a2 + b2 + c2 \(\ge3.\sqrt[3]{a^2.b^2.c^2}\)
\(\Leftrightarrow\left(\dfrac{a^2+b^2+c^2}{3}\right)^3\ge a^2b^2c^2\)
\(\Leftrightarrow\left(\dfrac{3}{3}\right)^3\ge a^2b^2c^2\)
\(\Leftrightarrow1\ge a^2b^2c^2\)
\(\Leftrightarrow1\ge abc\)
\(\Leftrightarrow-abc\le1\) (1)
Now , we have to prove this .
(|a| + |b| + |c|)2 \(\le\) 3(a2 + b2 + c2)
\(\Leftrightarrow\left|a\right|^2+\left|b\right|^2+\left|c\right|^2+2.\left|a\right|.\left|b\right|+2.\left|b.\right|.\left|c\right|+2.\left|c\right|.\left|a\right|\le3a^2+3b^2+3c^2\)
\(\Leftrightarrow a^2+b^2+c^2+2.ab+2.bc+2.ca\le3a^2+3b^2+3c^2\)
\(\Leftrightarrow2.ab+2.bc+2.ca\le2a^2+2b^2+2c^2\)
\(\Leftrightarrow0\le2a^2+2b^2+2c^2-2ab-2bc-2ca\)
\(\Leftrightarrow0\le\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\) (right)
So , \(\left(\left|a\right|+\left|b\right|+\left|c\right|\right)^2\le3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow\left(\left|a\right|+\left|b\right|+\left|c\right|\right)^2\le3.3=9\)
But |a| + |b| + |c| \(\ge\) 0
\(\Rightarrow\left|a\right|+\left|b\right|+\left|c\right|\le3\) (2)
From (1) and (2)
=> |a| + |b| + |c| - abc \(\le\) 4
Selected by MathYouLike -
Equality occurs when and only when in three numbers a,b,c
+ There are 2 numbers equals 1
+ 1 number equals -1