MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Kantai Collection

16/07/2017 at 09:13
Answers
2
Follow

Give a,b,c are positive real numbers and a2 + b2 + c2 = 3

Prove that |a| + |b| + |c| - abc \(\le\) 4




    List of answers
  • ...
    Kayasari Ryuunosuke Coordinator 16/07/2017 at 09:38

    Good problem ! Thank you !

    Use AM-GM for three numbers , we have :

    a2 + b2 + c2 \(\ge3.\sqrt[3]{a^2.b^2.c^2}\)

    \(\Leftrightarrow\left(\dfrac{a^2+b^2+c^2}{3}\right)^3\ge a^2b^2c^2\)

    \(\Leftrightarrow\left(\dfrac{3}{3}\right)^3\ge a^2b^2c^2\)

    \(\Leftrightarrow1\ge a^2b^2c^2\)

    \(\Leftrightarrow1\ge abc\)

    \(\Leftrightarrow-abc\le1\)              (1) 

    Now , we have to prove this .

    (|a| + |b| + |c|)2 \(\le\) 3(a2 + b2 + c2)

    \(\Leftrightarrow\left|a\right|^2+\left|b\right|^2+\left|c\right|^2+2.\left|a\right|.\left|b\right|+2.\left|b.\right|.\left|c\right|+2.\left|c\right|.\left|a\right|\le3a^2+3b^2+3c^2\)

    \(\Leftrightarrow a^2+b^2+c^2+2.ab+2.bc+2.ca\le3a^2+3b^2+3c^2\)

    \(\Leftrightarrow2.ab+2.bc+2.ca\le2a^2+2b^2+2c^2\)

    \(\Leftrightarrow0\le2a^2+2b^2+2c^2-2ab-2bc-2ca\)

    \(\Leftrightarrow0\le\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)           (right)

    So , \(\left(\left|a\right|+\left|b\right|+\left|c\right|\right)^2\le3\left(a^2+b^2+c^2\right)\)

    \(\Leftrightarrow\left(\left|a\right|+\left|b\right|+\left|c\right|\right)^2\le3.3=9\)

    But |a| + |b| + |c| \(\ge\) 0

    \(\Rightarrow\left|a\right|+\left|b\right|+\left|c\right|\le3\)                        (2)

    From (1) and (2) 

    => |a| + |b| + |c| - abc \(\le\) 4

    Selected by MathYouLike
  • ...
    Kayasari Ryuunosuke Coordinator 16/07/2017 at 09:54

    Equality occurs when and only when in three numbers a,b,c

    + There are 2 numbers equals 1

    + 1 number equals -1 


Post your answer

Please help Kantai Collection to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM