MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Phan Thanh Tinh Coordinator

15/07/2017 at 23:43
Answers
2
Follow

Given a + b + c = 3.Simply the fraction : \(\dfrac{a^3+b^3+c^3-3abc}{\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3}\)


Algebraic fraction


    List of answers
  • ...
    Ace Legona 16/07/2017 at 12:40

    From \(a^3+b^3+c^3-3abc\)

    \(=\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc\)

    \(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)

    \(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

    \(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

    \(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

    Hence \(A=\dfrac{a^3+b^3+c^3-3abc}{\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3}\)

    \(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3}=0\left(a+b+c=0\right)\)

    Done  !!

    Selected by MathYouLike
  • ...
    Phan Thanh Tinh Coordinator 16/07/2017 at 17:34

    You're wrong.The question gives a + b + c = 3


Post your answer

Please help Phan Thanh Tinh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM