MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Kayasari Ryuunosuke Coordinator

14/07/2017 at 20:46
Answers
4
Follow

Give a,b,c \(\ge\) 0 

Prove that : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)




    List of answers
  • ...
    Phan Thanh Tinh Coordinator 15/07/2017 at 07:56

    Using AM-GM inequality,consider the following expression :

    \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{a}+1+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{c}{b}+1\)\(=3+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\)

    \(\ge3+2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}+2\sqrt{\dfrac{b}{c}.\dfrac{c}{b}}+2\sqrt{\dfrac{a}{c}.\dfrac{c}{a}}=3+2+2+2=9\)

    Divide both sides of the inequality by a + b + c > 0,we have :

    \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)

    P/S : a,b,c can't be equal to 0

    Selected by MathYouLike
  • ...
    Kayasari Ryuunosuke Coordinator 16/07/2017 at 08:41

    Use AM-GM for three numbers , we have :

    \(a+b+c\ge3\sqrt[3]{abc}\)

    \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{3}{\sqrt[3]{abc}}\)

    So \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3.\sqrt[3]{abc}.\dfrac{3}{\sqrt[3]{abc}}=9\)

    \(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)

  • ...
    Lãng Tử Hào Hoa 15/07/2017 at 10:26

    Use BĐT Cauchy - Schwarz form Engel we have:

    \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) \(\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}=\dfrac{9}{a+b+c}\) (Đpcm)

    Equal sign occurs \(\Leftrightarrow a=b=c\)

  • ...
    Faded 28/01/2018 at 21:30

    Using AM-GM inequality,consider the following expression :

    (a+b+c)(1a+1b+1c)=1+ab+ac+ba+1+bc+ca+cb+1

    =3+(ab+ba)+(bc+cb)+(ac+ca)

    ≥3+2√ab.ba+2√bc.cb+2√ac.ca=3+2+2+2=9

    Divide both sides of the inequality by a + b + c > 0,we have :

    1a+1b+1c≥9a+b+c

    P/S : a,b,c can't be equal to 0


Post your answer

Please help Kayasari Ryuunosuke to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM