MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Lê Quốc Trần Anh Coordinator

12/07/2017 at 08:57
Answers
1
Follow

Prove that:

\(\dfrac{99}{100}>\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}>\dfrac{99}{202}\)




    List of answers
  • ...
    Kayasari Ryuunosuke Coordinator 12/07/2017 at 09:18

    We have :

    \(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

    \(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

    .................

    \(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

    \(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+.....+\dfrac{1}{100^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+.....+\dfrac{1}{99.100}\)

    \(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}=\dfrac{99}{100}\) (1)

    In another case , we have :

    \(\dfrac{1}{2^2}>\dfrac{1}{2.3}\)

    \(\dfrac{1}{3^2}>\dfrac{1}{3.4}\)

    ................

    \(\dfrac{1}{100^2}>\dfrac{1}{100.101}\)

    \(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+.....+\dfrac{1}{100^2}>\dfrac{1}{2.3}+\dfrac{1}{3.4}+....+\dfrac{1}{100.101}\)

    \(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{100}-\dfrac{1}{101}=\dfrac{99}{202}\) (2)

    From (1) and (2)

    => \(\dfrac{99}{100}>\dfrac{1}{2^2}+\dfrac{1}{3^2}+.....+\dfrac{1}{100^2}>\dfrac{99}{202}\)

    Lê Quốc Trần Anh selected this answer.

Post your answer

Please help Lê Quốc Trần Anh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM