MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Lê Quốc Trần Anh Coordinator

12/07/2017 at 08:52
Answers
1
Follow

We have:

\(P=\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{\left(2n+1\right)\left(2n+3\right)}\)

Prove that: \(P< 1,\forall n>0\)




    List of answers
  • ...
    Phan Thanh Tinh Coordinator 12/07/2017 at 09:10

    Consider the following expression :

    \(\dfrac{2}{a\left(a+2\right)}=\dfrac{\left(a+2\right)-a}{a\left(a+2\right)}=\dfrac{1}{a}-\dfrac{1}{a+2}\)\(\left(a\ne0;-2\right)\)

    We have :

    \(P=\dfrac{2}{1.3}+\dfrac{2}{3.5}+....+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}+\dfrac{2}{\left(2n+1\right)\left(2n+3\right)}\)

    \(=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}+\dfrac{1}{2n+1}-\dfrac{1}{2n+3}\)

    \(=1-\dfrac{1}{2n+3}\)

    \(n>0\Rightarrow2n+3>3\Rightarrow\dfrac{-1}{3}< \dfrac{-1}{2n+3}< 0\Rightarrow\dfrac{4}{3}< 1-\dfrac{1}{2n+3}< 1\)

    Hence,\(\dfrac{4}{3}< P< 1\forall n>0\)

    Selected by MathYouLike

Post your answer

Please help Lê Quốc Trần Anh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM