MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Summer Clouds moderators

07/07/2017 at 08:41
Answers
1
Follow

Let ABCD.A'B'C' D' be a cube with \(AC'=3\left(cm\right)\). Find the total surface area of this cube.




    List of answers
  • ...
    Phan Thanh Tinh Coordinator 07/07/2017 at 10:00

    A B C D A' B' C' D'

    \(AA'\perp A'B\),so AA' and the plane A'B'C'D' are perpendicular

    \(\Rightarrow AA'\perp A'C'\)

    Let a be the length of each side of the cube in cm.We have :

    ABCDA'B'C'D' is a cube,so \(\Delta A'B'C'\) isosceles right at B'

    \(\Rightarrow AC^2=2a^2\).

    Applying the Pythagoras theorem to the\(\Delta AA'C'\) right at A' ,we have : \(AC'^2=AA'^2+A'C'^2\Leftrightarrow3a^2=9\Leftrightarrow a=\sqrt{3}\)

    The total surface area of the cube is : \(6a^2=6\times3=18\) (cm2)

    Selected by MathYouLike

Post your answer

Please help Summer Clouds to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM