Summer Clouds moderators
07/07/2017 at 08:41-
\(AA'\perp A'B\),so AA' and the plane A'B'C'D' are perpendicular
\(\Rightarrow AA'\perp A'C'\)
Let a be the length of each side of the cube in cm.We have :
ABCDA'B'C'D' is a cube,so \(\Delta A'B'C'\) isosceles right at B'
\(\Rightarrow AC^2=2a^2\).
Applying the Pythagoras theorem to the\(\Delta AA'C'\) right at A' ,we have : \(AC'^2=AA'^2+A'C'^2\Leftrightarrow3a^2=9\Leftrightarrow a=\sqrt{3}\)
The total surface area of the cube is : \(6a^2=6\times3=18\) (cm2)
Selected by MathYouLike