MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Summer Clouds moderators

06/07/2017 at 14:11
Answers
1
Follow

Give \(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\) and \(B=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}\).
Compare A and B.




    List of answers
  • ...
    Kayasari Ryuunosuke Coordinator 06/07/2017 at 15:33

    We have :

    \(\dfrac{1}{1^2}>\dfrac{1}{1.2}\)

    \(\dfrac{1}{2^2}>\dfrac{1}{2.3}\)

    \(\dfrac{1}{3^2}>\dfrac{1}{3.4}\)

    ..............

    \(\dfrac{1}{100^2}>\dfrac{1}{99.100}\)

    => \(B=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+.....+\dfrac{1}{100^2}>\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+......+\dfrac{1}{99.100}=A\)

    So B > A

    Selected by MathYouLike

Post your answer

Please help Summer Clouds to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM