MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Summer Clouds moderators

28/06/2017 at 08:57
Answers
1
Follow

Calculate: \(\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+....+\dfrac{1}{\sqrt{99}+\sqrt{100}}\).




    List of answers
  • ...
    Phan Thanh Tinh Coordinator 28/06/2017 at 10:34

    Let A be the sum,then :

    \(-A=\dfrac{-1}{1+\sqrt{2}}+\dfrac{-1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{-1}{\sqrt{98}+\sqrt{99}}+\dfrac{-1}{\sqrt{99}+\sqrt{100}}\)

    With \(n\ge0\),we have :

    \(\left(\sqrt{n}+\sqrt{n+1}\right)\left(\sqrt{n+1}-\sqrt{n}\right)=\left(n+1\right)-n=1\)

    \(\Rightarrow\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\sqrt{n+1}-\sqrt{n}\)

    \(\Rightarrow\dfrac{-1}{\sqrt{n}+\sqrt{n+1}}=\sqrt{n}-\sqrt{n+1}\)

    Hence,we have :

    \(-A=1-\sqrt{2}+\sqrt{2}-\sqrt{3}+...+\sqrt{98}-\sqrt{99}+\sqrt{99}-\sqrt{100}\)

    \(=1-10=-9\)

    \(\Rightarrow A=9\)

    Selected by MathYouLike

Post your answer

Please help Summer Clouds to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM