Summer Clouds moderators
28/06/2017 at 08:57-
Let A be the sum,then :
\(-A=\dfrac{-1}{1+\sqrt{2}}+\dfrac{-1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{-1}{\sqrt{98}+\sqrt{99}}+\dfrac{-1}{\sqrt{99}+\sqrt{100}}\)
With \(n\ge0\),we have :
\(\left(\sqrt{n}+\sqrt{n+1}\right)\left(\sqrt{n+1}-\sqrt{n}\right)=\left(n+1\right)-n=1\)
\(\Rightarrow\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\sqrt{n+1}-\sqrt{n}\)
\(\Rightarrow\dfrac{-1}{\sqrt{n}+\sqrt{n+1}}=\sqrt{n}-\sqrt{n+1}\)
Hence,we have :
\(-A=1-\sqrt{2}+\sqrt{2}-\sqrt{3}+...+\sqrt{98}-\sqrt{99}+\sqrt{99}-\sqrt{100}\)
\(=1-10=-9\)
\(\Rightarrow A=9\)
Selected by MathYouLike