Summer Clouds moderators
26/06/2017 at 09:14-
Trần Nhật Dương 26/06/2017 at 15:32
Draw AE // BC.
The quadrilateral ABCE has AB // CE ; AE // BC,so it's a parallelogram
⇒AB=CE;ˆE1=ˆB=1250⇒ˆE2=1800−ˆE1=550⇒AB=CE;E1^=B^=1250⇒E2^=1800−E1^=550
ˆE1E1^is the exterior angle of ΔADEΔADE ⇒ˆA1+ˆD=ˆE1⇒A1^+D^=E1^
⇒ˆA1=1250−700=550⇒A1^=1250−700=550
ΔADEΔADE has ˆA1=ˆE2=550A1^=E2^=550,so ΔADEΔADE isosceles at D
⇒AD=DE⇒CD=CE+DE=AB+AD⇒AD=DE⇒CD=CE+DE=AB+AD
P/S : The question must be changed into ˆD=700D^=700or ˆB=127.50
-
Draw AE // BC.
The quadrilateral ABCE has AB // CE ; AE // BC,so it's a parallelogram
\(\Rightarrow AB=CE;\widehat{E_1}=\widehat{B}=125^0\Rightarrow\widehat{E_2}=180^0-\widehat{E_1}=55^0\)
\(\widehat{E_1}\)is the exterior angle of \(\Delta ADE\) \(\Rightarrow\widehat{A_1}+\widehat{D}=\widehat{E_1}\)
\(\Rightarrow\widehat{A_1}=125^0-70^0=55^0\)
\(\Delta ADE\) has \(\widehat{A_1}=\widehat{E_2}=55^0\),so \(\Delta ADE\) isosceles at D
\(\Rightarrow AD=DE\Rightarrow CD=CE+DE=AB+AD\)
P/S : The question must be changed into \(\widehat{D}=70^0\)or \(\widehat{B}=127.5^0\)