-
Appying the Pythagoras theorem to the right \(\Delta ABC\),we have :
\(AB^2+AC^2=BC^2\Rightarrow BC=\sqrt{3^2+4^2}=\sqrt{25}=5\) (cm)
\(S_{ABC}=\dfrac{AB\times AC}{2}=\dfrac{AH\times BC}{2}\Rightarrow AB\times AC=AH\times BC\)
\(\Rightarrow AH=\dfrac{3\times4}{5}=2.4\) (cm)
Summer Clouds selected this answer. -
Thu Thảo 17/06/2017 at 21:43
Because \(\Delta ABC\) is a square triangle.
\(\Rightarrow\)\(AB^2+AC^2=BC^2\) (Pytago)
\(\Rightarrow BC=\sqrt{3^2+4^2}=5\)
We have:
\(AB\cdot AC=BC\cdot AH\)\(\Rightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{3\cdot4}{5}=\dfrac{12}{5}=2.4\left(cm\right)\)
Answer: 2.4 cm