MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Summer Clouds

13/06/2017 at 09:11
Answers
4
Follow

If the sum of three positive numbers is equal to 20, then the product of the two largest numbers among them cannot be
A) greater than 99
B) less than 0,001
C) equal to 25
D) equal to 100




    List of answers
  • ...
    Phan Minh Anh 13/06/2017 at 16:00

    The answer is D ( equal to 100 )

  • ...
    Phan Minh Anh 13/06/2017 at 15:58

    The answer is D

  • ...
    Phan Thanh Tinh Coordinator 13/06/2017 at 10:54

    Sorry ! The solution above is correct when the numbers are natural numbers.I'll solve it again

    \(\left\{{}\begin{matrix}a+b+c=20\\c>0\end{matrix}\right.\)\(\Rightarrow a+b< 20\).We have :

    \(\dfrac{a+b}{2}\ge\sqrt{ab}\) (AM-GM inequality)

    \(\Rightarrow\sqrt{ab}\le\dfrac{a+b}{2}< 10\Rightarrow ab< 100\)

    Hence,the answer is D

  • ...
    Phan Thanh Tinh Coordinator 13/06/2017 at 10:46

    Let a,b,c be the numbers and assume that a,b are 2 largest numbers

    \(\left(a,b,c\in Z^+\right)\)

    We have : \(a>c;b>c\Rightarrow a+b>2c\Rightarrow a+b+c>3c\)

    \(\Rightarrow3c< 20\Rightarrow c\le6\Rightarrow a+b\ge14\) but \(c\ge1\Rightarrow a+b\le19\)

    So,\(14\le a+b\le19\).We have :

    \(\dfrac{a+b}{2}\ge\sqrt{ab}\) (AM-GM inequality)

    \(\Rightarrow\dfrac{19}{2}\ge\dfrac{a+b}{2}\ge\sqrt{ab}\Rightarrow ab\le\dfrac{361}{4}=90.25< 99< 100\)

    \(c\ge1\Rightarrow a>1;b>1\Rightarrow ab>1>0.001\)

    If ab = 25,then (a ; b) = (1 ; 25) ; (5 ; 5) ; (25 ; 1)

    \(\Rightarrow a+b=10;26\) (absurd)

    Hence,there are no answers


Post your answer

Please help Summer Clouds to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM