Summer Clouds
13/06/2017 at 09:11-
Phan Minh Anh 13/06/2017 at 16:00
The answer is D ( equal to 100 )
-
Phan Minh Anh 13/06/2017 at 15:58
The answer is D
-
Sorry ! The solution above is correct when the numbers are natural numbers.I'll solve it again
\(\left\{{}\begin{matrix}a+b+c=20\\c>0\end{matrix}\right.\)\(\Rightarrow a+b< 20\).We have :
\(\dfrac{a+b}{2}\ge\sqrt{ab}\) (AM-GM inequality)
\(\Rightarrow\sqrt{ab}\le\dfrac{a+b}{2}< 10\Rightarrow ab< 100\)
Hence,the answer is D
-
Let a,b,c be the numbers and assume that a,b are 2 largest numbers
\(\left(a,b,c\in Z^+\right)\)
We have : \(a>c;b>c\Rightarrow a+b>2c\Rightarrow a+b+c>3c\)
\(\Rightarrow3c< 20\Rightarrow c\le6\Rightarrow a+b\ge14\) but \(c\ge1\Rightarrow a+b\le19\)
So,\(14\le a+b\le19\).We have :
\(\dfrac{a+b}{2}\ge\sqrt{ab}\) (AM-GM inequality)
\(\Rightarrow\dfrac{19}{2}\ge\dfrac{a+b}{2}\ge\sqrt{ab}\Rightarrow ab\le\dfrac{361}{4}=90.25< 99< 100\)
\(c\ge1\Rightarrow a>1;b>1\Rightarrow ab>1>0.001\)
If ab = 25,then (a ; b) = (1 ; 25) ; (5 ; 5) ; (25 ; 1)
\(\Rightarrow a+b=10;26\) (absurd)
Hence,there are no answers