Summer Clouds
12/06/2017 at 08:51-
Follows the picture , we can see area A , B and C are square .
Call the length of the square edges of squares A, B, C in turn a, b, c
=> a = \(\sqrt{S_A}=\sqrt{100}=10\) ; b = \(\sqrt{S_B}=\sqrt{36}=6\)
Apply the Pythagoras , we have :
b2 + c2 = a2
c2 = a2 - b2
c2 = 102 - 62 = 64
=> c = 8 (c can not be equal to -8 because it's the length of an edge)
=> SC = c2 = 82 = 64 (cm2)
Summer Clouds selected this answer. -
Thu Thảo 17/06/2017 at 22:07
Follow the pic of Kayasari Ryuunosuke :)
\(\Rightarrow a=\sqrt{100}=10\left(cm\right)\)
\(b=\sqrt{36}=6\left(cm\right)\)
Pythagoras \(\Rightarrow\)\(c=\sqrt{10^2-6^2}=8\left(cm\right)\)
\(\Rightarrow\)\(S_C=8^2=64\left(cm^2\right)\)
-
Denote the length as shown.Applying the Pythagoras theorem to the right triangle above,we have : b2 + c2 = a2
\(\Rightarrow S_B+S_C=S_A\Rightarrow S_C=100-36=64\) (cm2)