MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Summer Clouds

12/06/2017 at 08:51
Answers
3
Follow

Area A is 100 \(cm^2\). Area B is 36 \(cm^2\). Area C is ...............\(cm^2\).
undefined




    List of answers
  • ...
    Kayasari Ryuunosuke Coordinator 12/06/2017 at 20:51

    A B C a b c

    Follows the picture , we can see area A , B and C are square .

    Call the length of the square edges of squares A, B, C in turn a, b, c

    => a = \(\sqrt{S_A}=\sqrt{100}=10\) ; b = \(\sqrt{S_B}=\sqrt{36}=6\)

    Apply the Pythagoras , we have :

    b2 + c2 = a2

    c2 = a2 - b2

    c2 = 102 - 62 = 64

    => c = 8 (c can not be equal to -8 because it's the length of an edge)

    => SC = c2 = 82 = 64 (cm2)

    Summer Clouds selected this answer.
  • ...
    Thu Thảo 17/06/2017 at 22:07

    Follow the pic of Kayasari Ryuunosuke :)

    \(\Rightarrow a=\sqrt{100}=10\left(cm\right)\)

    \(b=\sqrt{36}=6\left(cm\right)\)

    Pythagoras \(\Rightarrow\)\(c=\sqrt{10^2-6^2}=8\left(cm\right)\)

    \(\Rightarrow\)\(S_C=8^2=64\left(cm^2\right)\)

  • ...
    Phan Thanh Tinh Coordinator 12/06/2017 at 17:17

    B A C b a c

    Denote the length as shown.Applying the Pythagoras theorem to the right triangle above,we have : b2 + c2 = a2

    \(\Rightarrow S_B+S_C=S_A\Rightarrow S_C=100-36=64\) (cm2)


Post your answer

Please help Summer Clouds to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM