MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Lê Quốc Trần Anh

05/06/2017 at 10:16
Answers
3
Follow

Prove that:

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2017^2}\)< \(1\)


Fraction


    List of answers
  • ...
    Futeruno Kanzuki Coordinator 05/06/2017 at 20:05

    We have :

    \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+.....+\dfrac{1}{2017^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+.....+\dfrac{1}{2016.2017}\)

    \(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{2016}-\dfrac{1}{2017}=1-\dfrac{1}{2017}< 1\)

    \(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+......+\dfrac{1}{2017^2}< 1\)

    Lê Quốc Trần Anh selected this answer.
  • ...
    FA KAKALOTS 28/01/2018 at 22:15

    e have :

    122+132+.....+120172<11.2+12.3+.....+12016.2017

    =11−12+12−13+....+12016−12017=1−12017<1

    ⇒122+132+......+120172<1

  • ...
    Phan Thanh Tinh Coordinator 05/06/2017 at 20:26

    Denote \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2017^2}\)

    We have :

    \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{2016^2}< \dfrac{1}{2015.2016};\dfrac{1}{2017^2}< \dfrac{1}{2016.2017}\)

    \(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2016^2}+\dfrac{1}{2017^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2015.2016}+\dfrac{1}{2016.2017}\)

    \(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}+\dfrac{1}{2016}-\dfrac{1}{2017}\)

    \(=1-\dfrac{1}{2017}< 1\)

    So A < 1


Post your answer

Please help Lê Quốc Trần Anh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM