MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 1 )
  • See question detail
    taking modulo. enumerating solutions
      \item factoring (SFFT)
      \item infinite descent
      \item Iurie's ``parameterization" trick. (IMO ??/6: Let $a>b>c>d$ be positive integers and suppose
      \[
      ac+bd=(b+d+a-c)(b+d-a+c).
      \]
      Prove that $ab+cd$ is not prime.
      \item Constructing solutions
      \item
      geometric methods (Minkowski)
      \end{enumerate}
      \end{enumerate}
       
      \section{Linear Diophantine Equations}
      An equation of the form
      \begin{equation}
      a_1 x_1+ \dots + a_n x_n =b, \label{eq1}
      \end{equation}
      where $a_1,\dots,a_n,b \in \mathbb{Z}$ is called linear diophantine
      equation.
       
      \begin{thm}
      The equation (\ref{eq1}) is solvable if and only if
      $\gcd(a_1,\dots,a_n)\mid b$.
      \end{thm}
       
      \begin{proof}
      Let $d=\gcd(a_1,\dots,a_n)$. If $d\nmid b$ the equation is not
      solvable. If $d\mid b$ we denote $a_i'=\cfrac{a_i}{d}, \
      b'=\cfrac{b}{d}$. Then $\gcd(a_1',\dots,a_n')=1$ and the generalized
      B\'{e}zout Lemma says that there exist $x_i'$ such that
      $a_1'x_1'+\dots +a_n' x_n'=1$, which implies $a_1x_1'+\dots
      +a_nx_n'=d$. We obtain $a_1(b'x_1')+\dots +a_n(b'x_n')=b'd=b.$
      \end{proof}
       
      \begin{cor}
      Let $a_1,a_2$ be relatively prime integers. If $(x_1^0,x_2^0)$ is a
      solution to the equation
      $$a_1x_1+a_2x_2=b, $$
      then all its solutions are given by
      \begin{equation*}
      \begin{cases}
      x_1=x_1^0+a_2 t \\
      x_2=x_2^0-a_1 t
      \end{cases}
      ,t\in \mathbb{Z}.
      \end{equation*}
      \end{cor}
       
      \begin{prb}
      Solve the equation
      $$15x+84y=39. $$
      \end{prb}
       
      \begin{proof}
      The equation is equivalent to $5x+28y=13$. A solution is $y=1, \
      x=-3$. All solutions are of the form $x=-3+28
© HCEM 10.1.29.240
Crafted with by HCEM