Answers ( 2 )
-
See question detail
Điều kiện xác định: \(H\ne-1\)
\(\dfrac{-4,9H^2+15,2H+20,1}{H+1}\)
\(=\dfrac{-4,9H^2-4,9H+15,2H+20,1}{H+1}\)
\(=\dfrac{-4,9H\left(H+1\right)+15,2\left(H+1\right)}{H+1}\)
\(=\dfrac{\left(H+1\right)\left(15,2-4,9H\right)}{H+1}\)
\(=15,2-4,9H\)
-
See question detail
Điều kiện xác định: \(H\ne-1\)\(\dfrac{-4,9H^2+15,2H+20,1}{H+1}=\dfrac{-4,9H^2-4,9H+20,1H+20,1}{H+1}=\dfrac{-4,9H\left(H+1\right)+20,1\left(H+1\right)}{H+1}=\dfrac{\left(H+1\right)\left(20,1-4,9H\right)}{H+1}=20,1-4,9H\)