MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 6 )
  • See question detail

    30.40=1200

  • See question detail

    Another way:

    We have: \(\overline{x_nx_{n-1}...x_3x_2x_1}=100.\overline{x_nx_{n-1}...x_3}+\overline{x_2x_1}\)

    Since \(100⋮4\)=>\(100.\overline{x_nx_{n-1}...x_3}⋮4\)

    \(\overline{x_nx_{n-1}...x_3x_2x_1}⋮4\)=>\(\overline{x_2x_1}⋮4\)

    In other word: a number is divisibility by 4 when the last three digits on the right-hand is divisibility by 4

  • See question detail

    We have: \(\dfrac{2n+1}{\left(n^2+n\right)^2}=\dfrac{\left(n+1\right)^2-n^2}{n^2\left(n+1\right)^2}=\dfrac{1}{n^2}-\dfrac{1}{\left(n+1\right)^2}\)

    So: \(M=\dfrac{2.1+1}{\left(1^2+1\right)^2}+\dfrac{2.2+1}{\left(2^2+2\right)^2}+...+\dfrac{2.2015+1}{\left(2015^2+2015\right)^2}\)

                \(=1-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+...+\dfrac{1}{2015^2}-\dfrac{1}{2016^2}\)

                \(=1-\dfrac{1}{2016^2}< 1\)

  • See question detail

    Condition: \(x\ne5\)

    We have: \(\dfrac{x^2-5x}{x-5}=5\Leftrightarrow\dfrac{x\left(x-5\right)}{x-5}=5\Leftrightarrow x=5\)

    So the experiment of the above equation is \(S=\left\{\phi\right\}\)

  • See question detail

    We have: \(A=x^4+6x^{^3}+7x^2-6x+1\)

                        \(=\left(x^4+6x^3+9x^2\right)-\left(2x^2+6x\right)+1\)

                        \(=\left(x^2+3x\right)^2-2\left(x^2+3x\right)+1\)

                        \(=\left(x^2+3x-1\right)^2\)

  • See question detail

    Ta có: \(\dfrac{2n+1}{n^2\left(n+1\right)^2}=\dfrac{\left(n+1\right)^2-n^2}{n^2\left(n+1\right)^2}=\dfrac{1}{n^2}-\dfrac{1}{\left(n+1\right)^2}\)

    Do đó \(\dfrac{3}{4}+\dfrac{5}{36}+\dfrac{7}{144}+...+\dfrac{2n+1}{n^2\left(n+1\right)^2}\)

           \(=1-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+\dfrac{1}{3^2}-\dfrac{1}{4^2}+...+\dfrac{1}{n^2}-\dfrac{1}{\left(n+1\right)^2}\)

           \(=1-\dfrac{1}{\left(n+1\right)^2}< 1\)

    Vậy \(\dfrac{3}{4}+\dfrac{5}{36}+\dfrac{7}{144}+...+\dfrac{2n+1}{n^2\left(n+1\right)^2}< 1\forall n\in\)N*

                   

© HCEM 10.1.29.240
Crafted with by HCEM